Suppr超能文献

随机霍奇金-赫胥黎系统中的脉冲序列

Spike trains in a stochastic Hodgkin-Huxley system.

作者信息

Henry C Tuckwell

机构信息

Department of Mathematics, University of California San Diego, Gillman Drive, La Jolla, CA 92093, USA.

出版信息

Biosystems. 2005 Apr;80(1):25-36. doi: 10.1016/j.biosystems.2004.09.032. Epub 2004 Nov 19.

Abstract

We consider a standard Hodgkin-Huxley model neuron with a Gaussian white noise input current with drift parameter mu and variance parameter sigma(2). Partial differential equations of second order are obtained for the first two moments of the time taken to spike from (any) initial state, as functions of the initial values. The analytical theory for a 2-component (V,m) approximation is also considered. Let mu(c) (approximately 4.15) be the critical value of mu for firing when noise is absent. Large sample simulation results are obtained for mu<mu(c) and mu>mu(c), for many values of sigma between 0 and 25. For the time to spike, the 2-component approximation is accurate for all sigma when mu=10, for sigma>7 when mu=5 and only when sigma>15 when mu=2. When mu<mu(c), sigma must be large to induce firing so paths are always erratic. As the noise increases, the coefficient of variation (CV) has a well-defined minimum, and then climbs steadily over the range considered. If mu is just above mu(c), when the noise is small, paths are close to deterministic and the standard deviation and CV of the time to spike are small. As sigma increases, some very erratic paths (some almost oscillatory) appear, making the mean, standard deviation and CV of the spike time very large. These erratic paths start to have a large influence, so all three statistics have very pronounced maxima at intermediate sigma. When mu>>mu(c), most paths show similar behavior and the moments exhibit smoothly changing behavior as sigma increases. Thus there are a different number of regimes depending on the magnitude of mu relative to mu(c): one when mu is small and when mu is large; but three when mu is close to and above mu(c). Both for the Hodgkin-Huxley (HH) system and the 2-component approximation, and regardless of the value of mu, the CV tends to about 1.3 at the largest value (25) of sigma considered. We also discuss in detail the problem of determining the interspike interval and give an accurate method for estimating this random variable by decomposing the interval into stochastic and almost deterministic components.

摘要

我们考虑一个具有高斯白噪声输入电流的标准霍奇金 - 赫胥黎模型神经元,其漂移参数为μ,方差参数为σ²。得到了从(任意)初始状态开始放电所需时间的前两个矩的二阶偏微分方程,这些方程是初始值的函数。还考虑了一个双分量(V,m)近似的解析理论。设μ(c)(约为4.15)为无噪声时放电的μ临界值。对于μ < μ(c)和μ > μ(c),在σ介于0和25之间的许多值下,获得了大样本模拟结果。对于放电时间,当μ = 10时,双分量近似对所有σ都准确;当μ = 5时,对于σ > 7准确;当μ = 2时,仅对于σ > 15准确。当μ < μ(c)时,必须有大的σ才能引发放电,因此路径总是不稳定的。随着噪声增加,变异系数(CV)有一个明确的最小值,然后在所考虑的范围内稳步上升。如果μ略高于μ(c),当噪声较小时,路径接近确定性,放电时间的标准差和CV较小。随着σ增加,会出现一些非常不稳定的路径(有些几乎是振荡的),使得放电时间的均值、标准差和CV非常大。这些不稳定路径开始产生很大影响,因此所有这三个统计量在中间的σ处都有非常明显的最大值。当μ >> μ(c)时,大多数路径表现出相似的行为,并且随着σ增加,矩呈现出平滑变化的行为。因此,根据μ相对于μ(c)的大小有不同数量的状态:μ小时和μ大时各一种;但μ接近和高于μ(c)时有三种。对于霍奇金 - 赫胥黎(HH)系统和双分量近似,无论μ的值如何,在所考虑的最大σ值(25)处,CV都趋于约1.3。我们还详细讨论了确定峰峰间隔的问题,并给出了一种通过将间隔分解为随机和几乎确定性分量来估计这个随机变量的准确方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验