Suppr超能文献

使用自组织映射在具有知晓感的多层感知器中避免过拟合。

Avoiding overfitting in multilayer perceptrons with feeling-of-knowing using self-organizing maps.

作者信息

Murakoshi Kazushi

机构信息

Department of Knowledge-based Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan.

出版信息

Biosystems. 2005 Apr;80(1):37-40. doi: 10.1016/j.biosystems.2004.09.031. Epub 2004 Nov 2.

Abstract

Overfitting in multilayer perceptron (MLP) training is a serious problem. The purpose of this study is to avoid overfitting in on-line learning. To overcome the overfitting problem, we have investigated feeling-of-knowing (FOK) using self-organizing maps (SOMs). We propose MLPs with FOK using the SOMs method to overcome the overfitting problem. In this method, the learning process advances according to the degree of FOK calculated using SOMs. The mean square error obtained for the test set using the proposed method is significantly less than that in a conventional MLP method. Consequently, the proposed method avoids overfitting.

摘要

多层感知器(MLP)训练中的过拟合是一个严重问题。本研究的目的是避免在线学习中的过拟合。为了克服过拟合问题,我们使用自组织映射(SOM)研究了知晓感(FOK)。我们提出了使用SOM方法的带FOK的MLP来克服过拟合问题。在这种方法中,学习过程根据使用SOM计算的FOK程度推进。使用所提出方法获得的测试集的均方误差明显小于传统MLP方法中的均方误差。因此,所提出的方法避免了过拟合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验