Murakoshi Kazushi
Department of Knowledge-based Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan.
Biosystems. 2005 Apr;80(1):37-40. doi: 10.1016/j.biosystems.2004.09.031. Epub 2004 Nov 2.
Overfitting in multilayer perceptron (MLP) training is a serious problem. The purpose of this study is to avoid overfitting in on-line learning. To overcome the overfitting problem, we have investigated feeling-of-knowing (FOK) using self-organizing maps (SOMs). We propose MLPs with FOK using the SOMs method to overcome the overfitting problem. In this method, the learning process advances according to the degree of FOK calculated using SOMs. The mean square error obtained for the test set using the proposed method is significantly less than that in a conventional MLP method. Consequently, the proposed method avoids overfitting.
多层感知器(MLP)训练中的过拟合是一个严重问题。本研究的目的是避免在线学习中的过拟合。为了克服过拟合问题,我们使用自组织映射(SOM)研究了知晓感(FOK)。我们提出了使用SOM方法的带FOK的MLP来克服过拟合问题。在这种方法中,学习过程根据使用SOM计算的FOK程度推进。使用所提出方法获得的测试集的均方误差明显小于传统MLP方法中的均方误差。因此,所提出的方法避免了过拟合。