Pölzlbauer Georg, Dittenbach Michael, Rauber Andreas
Department of Software Technology, Vienna University of Technology, Favoritenstrasse 9-11, Vienna, Austria.
Neural Netw. 2006 Jul-Aug;19(6-7):911-22. doi: 10.1016/j.neunet.2006.05.013. Epub 2006 Jun 19.
Self-Organizing Maps have been applied in various industrial applications and have proven to be a valuable data mining tool. In order to fully benefit from their potential, advanced visualization techniques assist the user in analyzing and interpreting the maps. We propose two new methods for depicting the SOM based on vector fields, namely the Gradient Field and Borderline visualization techniques, to show the clustering structure at various levels of detail. We explain how this method can be used on aggregated parts of the SOM that show which factors contribute to the clustering structure, and show how to use it for finding correlations and dependencies in the underlying data. We provide examples on several artificial and real-world data sets to point out the strengths of our technique, specifically as a means to combine different types of visualizations offering effective multidimensional information visualization of SOMs.
自组织映射已应用于各种工业应用中,并已被证明是一种有价值的数据挖掘工具。为了充分利用其潜力,先进的可视化技术可帮助用户分析和解释这些映射。我们提出了两种基于向量场描绘自组织映射的新方法,即梯度场和边界线可视化技术,以展示不同细节层次的聚类结构。我们解释了如何将此方法用于自组织映射的聚合部分,以显示哪些因素对聚类结构有贡献,并展示了如何将其用于发现基础数据中的相关性和依赖性。我们在几个人工和真实世界数据集上提供了示例,以指出我们技术的优势,特别是作为一种结合不同类型可视化以提供自组织映射有效多维信息可视化的手段。