Jin Xiaoping, Carlin Bradley P
Division of Biostatistics, School of Public Health, University of Minnesota, Mayo Mail Code 303, Minneapolis, Minnesota 55455-0392, USA.
Lifetime Data Anal. 2005 Mar;11(1):5-27. doi: 10.1007/s10985-004-5637-1.
In clustered survival settings where the clusters correspond to geographic regions, biostatisticians are increasingly turning to models with spatially distributed random effects. These models begin with spatially oriented frailty terms, but may also include further region-level terms in the parametrization of the baseline hazards or various covariate effects (as in a spatially-varying coefficients model). In this paper, we propose a multivariate conditionally autoregressive (MCAR) model as a mixing distribution for these random effects, as a way of capturing correlation across both the regions and the elements of the random effect vector for any particular region. We then extend this model to permit analysis of temporal cohort effects, where we use the term "temporal cohort" to mean a group of subjects all of whom were diagnosed with the disease of interest (and thus, entered the study) during the same time period (say, calendar year). We show how our spatiotemporal model may be efficiently fit in a hierarchical Bayesian framework implemented using Markov chain Monte Carlo (MCMC) computational techniques. We illustrate our approach in the context of county-level breast cancer data from 22 annual cohorts of women living in the state of Iowa, as recorded by the Surveillance, Epidemiology, and End Results (SEER) database. Hierarchical model comparison using the Deviance Information Criterion (DIC), as well as maps of the fitted county-level effects, reveal the benefit of our approach.
在聚类生存环境中,聚类对应于地理区域,生物统计学家越来越多地转向具有空间分布随机效应的模型。这些模型从具有空间导向的脆弱性项开始,但在基线风险或各种协变量效应的参数化中也可能包括进一步的区域水平项(如在空间变化系数模型中)。在本文中,我们提出了一个多元条件自回归(MCAR)模型作为这些随机效应的混合分布,以此来捕捉不同区域之间以及任何特定区域的随机效应向量元素之间的相关性。然后,我们扩展这个模型以允许分析时间队列效应,这里我们使用“时间队列”一词来表示一组在同一时间段(例如日历年)内都被诊断患有感兴趣疾病(因此进入研究)的受试者。我们展示了如何在使用马尔可夫链蒙特卡罗(MCMC)计算技术实现的分层贝叶斯框架中有效地拟合我们的时空模型。我们以爱荷华州22个年度女性队列的县级乳腺癌数据为例来说明我们的方法,这些数据由监测、流行病学和最终结果(SEER)数据库记录。使用偏差信息准则(DIC)进行分层模型比较以及拟合的县级效应图揭示了我们方法的优势。