Zhao Luping, Hanson Timothy E
Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
Biometrics. 2011 Jun;67(2):391-403. doi: 10.1111/j.1541-0420.2010.01468.x. Epub 2010 Aug 19.
With the proliferation of spatially oriented time-to-event data, spatial modeling in the survival context has received increased recent attention. A traditional way to capture a spatial pattern is to introduce frailty terms in the linear predictor of a semiparametric model, such as proportional hazards or accelerated failure time. We propose a new methodology to capture the spatial pattern by assuming a prior based on a mixture of spatially dependent Polya trees for the baseline survival in the proportional hazards model. Thanks to modern Markov chain Monte Carlo (MCMC) methods, this approach remains computationally feasible in a fully hierarchical Bayesian framework. We compare the spatially dependent mixture of Polya trees (MPT) approach to the traditional spatial frailty approach, and illustrate the usefulness of this method with an analysis of Iowan breast cancer survival data from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute. Our method provides better goodness of fit over the traditional alternatives as measured by log pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and full sample score (FSS) statistics.
随着具有空间方向的事件发生时间数据的激增,生存背景下的空间建模最近受到了越来越多的关注。捕捉空间模式的传统方法是在半参数模型的线性预测器中引入脆弱项,如比例风险模型或加速失效时间模型。我们提出了一种新的方法来捕捉空间模式,该方法通过在比例风险模型中为基线生存假设一个基于空间相关的波利亚树混合的先验。由于现代马尔可夫链蒙特卡罗(MCMC)方法,这种方法在完全分层的贝叶斯框架中仍然在计算上可行。我们将空间相关的波利亚树混合(MPT)方法与传统的空间脆弱方法进行比较,并通过对美国国家癌症研究所监测、流行病学和最终结果(SEER)计划中的爱荷华州乳腺癌生存数据进行分析来说明该方法的实用性。通过对数伪边际似然(LPML)、偏差信息准则(DIC)和全样本得分(FSS)统计量衡量,我们的方法比传统方法具有更好的拟合优度。