Suppr超能文献

用于生存数据的空间相关波利亚树建模

Spatially dependent polya tree modeling for survival data.

作者信息

Zhao Luping, Hanson Timothy E

机构信息

Eli Lilly and Company, Indianapolis, Indiana 46285, USA.

出版信息

Biometrics. 2011 Jun;67(2):391-403. doi: 10.1111/j.1541-0420.2010.01468.x. Epub 2010 Aug 19.

Abstract

With the proliferation of spatially oriented time-to-event data, spatial modeling in the survival context has received increased recent attention. A traditional way to capture a spatial pattern is to introduce frailty terms in the linear predictor of a semiparametric model, such as proportional hazards or accelerated failure time. We propose a new methodology to capture the spatial pattern by assuming a prior based on a mixture of spatially dependent Polya trees for the baseline survival in the proportional hazards model. Thanks to modern Markov chain Monte Carlo (MCMC) methods, this approach remains computationally feasible in a fully hierarchical Bayesian framework. We compare the spatially dependent mixture of Polya trees (MPT) approach to the traditional spatial frailty approach, and illustrate the usefulness of this method with an analysis of Iowan breast cancer survival data from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute. Our method provides better goodness of fit over the traditional alternatives as measured by log pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and full sample score (FSS) statistics.

摘要

随着具有空间方向的事件发生时间数据的激增,生存背景下的空间建模最近受到了越来越多的关注。捕捉空间模式的传统方法是在半参数模型的线性预测器中引入脆弱项,如比例风险模型或加速失效时间模型。我们提出了一种新的方法来捕捉空间模式,该方法通过在比例风险模型中为基线生存假设一个基于空间相关的波利亚树混合的先验。由于现代马尔可夫链蒙特卡罗(MCMC)方法,这种方法在完全分层的贝叶斯框架中仍然在计算上可行。我们将空间相关的波利亚树混合(MPT)方法与传统的空间脆弱方法进行比较,并通过对美国国家癌症研究所监测、流行病学和最终结果(SEER)计划中的爱荷华州乳腺癌生存数据进行分析来说明该方法的实用性。通过对数伪边际似然(LPML)、偏差信息准则(DIC)和全样本得分(FSS)统计量衡量,我们的方法比传统方法具有更好的拟合优度。

相似文献

1
Spatially dependent polya tree modeling for survival data.
Biometrics. 2011 Jun;67(2):391-403. doi: 10.1111/j.1541-0420.2010.01468.x. Epub 2010 Aug 19.
2
A Bayesian semiparametric accelerated failure time model.
Biometrics. 1999 Jun;55(2):477-83. doi: 10.1111/j.0006-341x.1999.00477.x.
3
Semiparametric proportional odds models for spatially correlated survival data.
Lifetime Data Anal. 2005 Jun;11(2):175-91. doi: 10.1007/s10985-004-0382-z.
4
Multivariate parametric spatiotemporal models for county level breast cancer survival data.
Lifetime Data Anal. 2005 Mar;11(1):5-27. doi: 10.1007/s10985-004-5637-1.
6
Mixtures of Polya trees for flexible spatial frailty survival modelling.
Biometrika. 2009 Jun 1;96(2):263-276. doi: 10.1093/biomet/asp014.
7
Semiparametric Bayesian estimation of quantile function for breast cancer survival data with cured fraction.
Biom J. 2016 Sep;58(5):1164-77. doi: 10.1002/bimj.201500111. Epub 2016 May 10.
8
Spatial extended hazard model with application to prostate cancer survival.
Biometrics. 2015 Jun;71(2):313-22. doi: 10.1111/biom.12268. Epub 2014 Dec 17.
9
Survival analysis for white non-Hispanic female breast cancer patients.
Asian Pac J Cancer Prev. 2014;15(9):4049-54. doi: 10.7314/apjcp.2014.15.9.4049.
10
Dynamic survival models with spatial frailty.
Lifetime Data Anal. 2006 Dec;12(4):441-60. doi: 10.1007/s10985-006-9020-2. Epub 2006 Sep 20.

引用本文的文献

1
Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana.
J Agric Biol Environ Stat. 2017 Mar;22(1):76-104. doi: 10.1007/s13253-016-0270-5. Epub 2016 Dec 2.
2
Spatially explicit survival modeling for small area cancer data.
J Appl Stat. 2018;45(3):568-585. doi: 10.1080/02664763.2017.1288200. Epub 2017 Feb 11.
3
Flexible modeling of the hazard rate and treatment effects in long-term survival studies.
Stat Methods Med Res. 2017 Oct;26(5):2455-2480. doi: 10.1177/0962280216688034. Epub 2017 Feb 2.
4
Generalized accelerated failure time spatial frailty model for arbitrarily censored data.
Lifetime Data Anal. 2017 Jul;23(3):495-515. doi: 10.1007/s10985-016-9361-4. Epub 2016 Mar 18.
6
Rubbery Polya Tree.
Scand Stat Theory Appl. 2012 Mar;39(1). doi: 10.1111/j.1467-9469.2011.00761.x.

本文引用的文献

1
Mixtures of Polya trees for flexible spatial frailty survival modelling.
Biometrika. 2009 Jun 1;96(2):263-276. doi: 10.1093/biomet/asp014.
2
Impact of geography on mammography use in California.
Cancer Causes Control. 2009 Oct;20(8):1339-53. doi: 10.1007/s10552-009-9355-6. Epub 2009 May 17.
3
Late-Stage Breast Cancer Diagnosis and Health Care Access in Illinois.
Prof Geogr. 2008 Feb;60(1):54-69. doi: 10.1080/00330120701724087.
4
Travel time to hospital and treatment for breast, colon, rectum, lung, ovary and prostate cancer.
Eur J Cancer. 2008 May;44(7):992-9. doi: 10.1016/j.ejca.2008.02.001. Epub 2008 Mar 28.
7
Dynamic survival models with spatial frailty.
Lifetime Data Anal. 2006 Dec;12(4):441-60. doi: 10.1007/s10985-006-9020-2. Epub 2006 Sep 20.
8
Validation of travel times to hospital estimated by GIS.
Int J Health Geogr. 2006 Sep 19;5:40. doi: 10.1186/1476-072X-5-40.
10
Spatial equity in facilities providing low- or no-fee screening mammography in Chicago neighborhoods.
J Urban Health. 2006 Mar;83(2):195-210. doi: 10.1007/s11524-005-9023-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验