Suppr超能文献

用于基于单模型图像进行人脸识别的多模态分布类别的局部线性判别分析。

Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image.

作者信息

Kittler J

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 Mar;27(3):318-327. doi: 10.1109/TPAMI.2005.58.

Abstract

We present a novel method of nonlinear discriminant analysis involving a set of locally linear transformations called "Locally Linear Discriminant Analysis (LLDA)." The underlying idea is that global nonlinear data structures are locally linear and local structures can be linearly aligned. Input vectors are projected into each local feature space by linear transformations found to yield locally linearly transformed classes that maximize the between-class covariance while minimizing the within-class covariance. In face recognition, linear discriminant analysis (LDA) has been widely adopted owing to its efficiency, but it does not capture nonlinear manifolds of faces which exhibit pose variations. Conventional nonlinear classification methods based on kernels such as generalized discriminant analysis (GDA) and support vector machine (SVM) have been developed to overcome the shortcomings of the linear method, but they have the drawback of high computational cost of classification and overfitting. Our method is for multiclass nonlinear discrimination and it is computationally highly efficient as compared to GDA. The method does not suffer from overfitting by virtue of the linear base structure of the solution. A novel gradient-based learning algorithm is proposed for finding the optimal set of local linear bases. The optimization does not exhibit a local-maxima problem. The transformation functions facilitate robust face recognition in a low-dimensional subspace, under pose variations, using a single model image. The classification results are given for both synthetic and real face data.

摘要

我们提出了一种新的非线性判别分析方法,该方法涉及一组称为“局部线性判别分析(LLDA)”的局部线性变换。其基本思想是,全局非线性数据结构在局部是线性的,并且局部结构可以线性对齐。通过线性变换将输入向量投影到每个局部特征空间,这些线性变换能产生局部线性变换后的类别,从而在最小化类内协方差的同时最大化类间协方差。在人脸识别中,线性判别分析(LDA)因其效率而被广泛采用,但它无法捕捉存在姿态变化的人脸的非线性流形。基于核的传统非线性分类方法,如广义判别分析(GDA)和支持向量机(SVM),已被开发出来以克服线性方法的缺点,但它们存在分类计算成本高和过拟合的问题。我们的方法用于多类非线性判别,与GDA相比,它在计算上具有很高的效率。由于解的线性基结构,该方法不会出现过拟合问题。提出了一种基于梯度的新颖学习算法来寻找最优的局部线性基集。该优化不存在局部最大值问题。这些变换函数有助于在低维子空间中,在姿态变化的情况下,使用单个模型图像进行鲁棒的人脸识别。给出了合成人脸数据和真实人脸数据的分类结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验