Suppr超能文献

基于 EEG 信号和特征交互建模的眼动行为预测研究。

EEG Signal and Feature Interaction Modeling-Based Eye Behavior Prediction Research.

机构信息

School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan Shandong 250353, China.

出版信息

Comput Math Methods Med. 2020 May 16;2020:2801015. doi: 10.1155/2020/2801015. eCollection 2020.

Abstract

In recent years, with the development of brain science and biomedical engineering, as well as the rapid development of electroencephalogram (EEG) signal analysis methods, using EEG signals to monitor human health has become a very popular research field. The innovation of this paper is to analyze the EEG signal for the first time by building a depth factorization machine model, so that on the basis of analyzing the characteristics of user interaction, we can use EEG data to predict the binomial state of eyes (open eyes and closed eyes). The significance of the research is that we can diagnose the fatigue and the health of the human body by detecting the state of eyes for a long time. On the basis of this inference, the proposed method can make a further useful auxiliary support for improving the accuracy of the recommendation system recommendation results. In this paper, we first extract the features of EEG data by wavelet transform technology and then build a depth factorization machine model (FM+LSTM) which combines factorization machine (FM) and Long Short-Term Memory (LSTM) in parallel. Through the test of real data set, the proposed model gets more efficient prediction results than other classifier models. In addition, the model proposed in this paper is suitable not only for the determination of eye features but also for the acquisition of interactive features (user fatigue) in the recommendation system. The conclusion obtained in this paper will be an important factor in the determination of user preferences in the recommendation system, which will be used in the analysis of interactive features by the graph neural network in the future work.

摘要

近年来,随着脑科学和生物医学工程的发展,以及脑电(EEG)信号分析方法的快速发展,利用 EEG 信号来监测人体健康已成为一个非常热门的研究领域。本文的创新之处在于首次通过构建深度分解机模型来分析 EEG 信号,以便在分析用户交互特征的基础上,利用 EEG 数据来预测眼睛的二项状态(睁眼和闭眼)。研究的意义在于,我们可以通过长时间检测眼睛的状态来诊断人体的疲劳和健康状况。在此推断的基础上,所提出的方法可以为提高推荐系统推荐结果的准确性提供进一步的有用辅助支持。在本文中,我们首先通过小波变换技术提取 EEG 数据的特征,然后构建一个深度分解机模型(FM+LSTM),该模型并行结合分解机(FM)和长短期记忆(LSTM)。通过真实数据集的测试,所提出的模型比其他分类器模型得到了更高效的预测结果。此外,本文提出的模型不仅适用于眼睛特征的确定,也适用于推荐系统中交互特征(用户疲劳)的获取。本文得出的结论将是推荐系统中确定用户偏好的一个重要因素,这将在未来的工作中用于图神经网络对交互特征的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05f/7246416/2856ba2afb38/CMMM2020-2801015.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验