Harino Hiroya, Mori Yoshiaki, Yamaguchi Yoshitaka, Shibata Kiyoshi, Senda Tetsuya
Osaka City Institute of Public Health and Environmental Sciences, Tojo-cho 8-34, Tennoji-ku, Osaka, 543-0026, Japan.
Arch Environ Contam Toxicol. 2005 Apr;48(3):303-10. doi: 10.1007/s00244-004-0084-2. Epub 2005 Feb 25.
Concentrations of booster antifouling compounds in the port of Osaka, Japan were assessed. Concentrations of Sea-Nine 211 (4,5-dichloro-2-n-octyl-3-isothiazolone), thiabendazole (2-(4-thiazolyl)-benzimidazole), IPBC (3-iodo-2-propynyl butylcarbamate), Diuron (3,4-dichlorophenyl-N, N-dimethylurea), Irgarol 1051 (2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine), and M1 (2-methylthio-4-t-butylamino-6-amino-s-triazine) in port water samples were in the range of <0.003-0.004 microg L(-1), <0.0008-0.020 microg L(-1), <0.0007-1.54 microg L(-1), <0.0008-0.267 microg L(-1), and <0.0019-0.167 microg L(-1), respectively. IPBC was not detected in the water samples, but the concentration of Diuron was higher than any previously reported. The concentrations of Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 in sediment samples were in the range of <0.04-2.4 microg kg(-1) dry, <0.08-1.2 microg kg(-1) dry, <0.64-1350 microg kg(-1) dry, <0.08-8.2 microg kg(-1) dry, and <0.18-2.9 microg kg(-1) dry, respectively. IPBC was again not detected. The levels of Sea-Nine 211, Diuron, and Irgarol 1051 in water and sediment samples were high in a poorly flushed mooring area for small and medium-hull vessels. Levels of Diuron and Irgarol 1051 were highest in summer. The concentration of Sea-Nine 211 in water increased between August and October 2002. Except for M1, increases in the levels of booster biocides in sediment were observed during the study period. The sediment-water partition (Kd) was calculated by dividing the concentrations in sediment by the concentrations in water. The Kd values for Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 were 690, 180, 2700, 300, and 870. The Kd value for these alternative compounds was lower than for TBT.
对日本大阪港中增效防污化合物的浓度进行了评估。港口水样中,海因9211(4,5-二氯-2-正辛基-3-异噻唑啉酮)、噻苯达唑(2-(4-噻唑基)-苯并咪唑)、IPBC(3-碘-2-丙炔基丁基氨基甲酸酯)、敌草隆(3,4-二氯苯基-N,N-二甲基脲)、藻菌清1051(2-甲硫基-4-叔丁氨基-6-环丙氨基-s-三嗪)和M1(2-甲硫基-4-叔丁氨基-6-氨基-s-三嗪)的浓度范围分别为<0.003 - 0.004微克/升、<0.0008 - 0.020微克/升、<0.0007 - 1.54微克/升、<0.0008 - 0.267微克/升和<0.0019 - 0.167微克/升。在水样中未检测到IPBC,但敌草隆的浓度高于以往任何报道。沉积物样品中海因9211、噻苯达唑、敌草隆、藻菌清1051和M1的浓度范围分别为<0.04 - 2.4微克/千克干重、<0.08 - 1.2微克/千克干重、<0.64 - 1350微克/千克干重、<0.08 - 8.2微克/千克干重和<0.18 - 2.9微克/千克干重。同样未检测到IPBC。在中小型船体船只停泊区水流不畅的区域,水和沉积物样品中海因9211、敌草隆和藻菌清1051的含量较高。敌草隆和藻菌清1051的含量在夏季最高。2002年8月至10月期间,水中海因9211的浓度有所增加。除M1外,在研究期间观察到沉积物中增效杀菌剂的含量有所增加。沉积物-水分配系数(Kd)通过沉积物中的浓度除以水中的浓度来计算。海因9211、噻苯达唑、敌草隆、藻菌清1051和M1的Kd值分别为690、180、2700、300和870。这些替代化合物的Kd值低于三丁基锡(TBT)的Kd值。