Pal Prajna P, Bae Jae Hyun, Azim M Kamran, Hess Petra, Friedrich Rainer, Huber Robert, Moroder Luis, Budisa Nediljko
Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany.
Biochemistry. 2005 Mar 15;44(10):3663-72. doi: 10.1021/bi0484825.
Global replacements of tyrosine by 2- and 3-fluorotyrosine in "enhanced green" and "enhanced yellow" mutants of Aequorea victoria green fluorescent proteins (avGFPs) provided protein variants with novel biophysical properties. While crystallographic and modeled structures of these proteins are indistinguishable from those of their native counterparts (i.e., they are perfectly isomorphous), there are considerable differences in their spectroscopic properties. The fluorine being an integral part of the avGFP chromophore induces changes in the titration curves, variations in the intensity of the absorbance and fluorescence, and spectral shifts in the emission maxima. Furthermore, targeted fluorination in close proximity to the fluorinated chromophore yielded additional variants with considerably enhanced spectral changes. These unique spectral properties are intrinsic features of the fluorinated avGFPs, in the context of the rigid chromophore-microenvironment interactions. The availability of the isomorpohous crystal structures of fluorinated avGFPs allowed mapping of novel, unusual interaction distances created by the presence of fluorine atoms. In addition, fluorine atoms in the ortho position of the chromophore tyrosyl moiety exhibit a single conformation, while in the meta position two conformer states were observed in the crystalline state. Such global replacements in chromophores of avGFPs and similar proteins result in "atomic mutations" (i.e., H --> F replacements) in the structures, offering unprecedented opportunities to understand and manipulate the relationships between protein structure and spectroscopic properties.
在维多利亚多管水母绿色荧光蛋白(avGFP)的“增强绿色”和“增强黄色”突变体中,用2-氟酪氨酸和3-氟酪氨酸对酪氨酸进行全局替换,得到了具有新型生物物理性质的蛋白质变体。虽然这些蛋白质的晶体结构和模型结构与它们的天然对应物无法区分(即它们完全同晶型),但其光谱性质存在显著差异。氟作为avGFP发色团的一个组成部分,会引起滴定曲线的变化、吸光度和荧光强度的变化以及发射最大值的光谱位移。此外,在靠近氟化发色团的位置进行靶向氟化产生了光谱变化显著增强的其他变体。在刚性发色团-微环境相互作用的背景下,这些独特的光谱性质是氟化avGFP的固有特征。氟化avGFP同晶型晶体结构的可得性使得能够绘制由氟原子的存在所产生的新的、不寻常的相互作用距离。此外,发色团酪氨酸部分邻位的氟原子呈现单一构象,而在间位,在晶体状态下观察到两种构象状态。avGFP和类似蛋白质发色团中的这种全局替换导致结构中的“原子突变”(即H→F替换),为理解和操纵蛋白质结构与光谱性质之间的关系提供了前所未有的机会。