Sigala Paul A, Kraut Daniel A, Caaveiro Jose M M, Pybus Brandon, Ruben Eliza A, Ringe Dagmar, Petsko Gregory A, Herschlag Daniel
Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2008 Oct 15;130(41):13696-708. doi: 10.1021/ja803928m. Epub 2008 Sep 23.
Enzymes are classically proposed to accelerate reactions by binding substrates within active-site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1-1 A scale of most substrate rearrangements. The flexibility of active-site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together 1.2-1.5 A resolution X-ray crystallography, (1)H and (19)F NMR spectroscopy, quantum mechanical calculations, and transition-state analogue binding measurements to test the distance scale on which noncovalent forces can constrain the structural relaxation or translation of side chains and ligands along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side-chain reorientation and prevent hydrogen bond shortening by 0.1 A or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function.
传统观点认为,酶通过在活性位点环境中结合底物来加速反应,这种活性位点环境在结构上预先组织好,以优化与反应过渡态而非基态的结合相互作用。考虑到大多数底物重排的规模有限,仅为0.1 - 1埃,这是一项极其艰巨的任务。活性位点官能团在底物重排坐标上的灵活性、酶能够区分结构重排的距离尺度以及该尺度上区分的能量意义,仍然是尚未解决的问题,这些问题对于从基本物理层面理解酶活性位点和催化作用至关重要。我们结合了分辨率为1.2 - 1.5埃的X射线晶体学、(1)H和(19)F核磁共振光谱、量子力学计算以及过渡态类似物结合测量,来测试非共价力能够沿着特定坐标限制侧链和配体的结构弛豫或平移的距离尺度,以及细菌酮甾体异构酶(KSI)活性位点内这种几何限制的能量后果。我们的结果有力地表明,KSI活性位点内的堆积和结合相互作用能够限制局部侧链的重新定向,并防止氢键缩短0.1埃或更少。此外,这种限制对配体结合以及氧负离子孔内负电荷的稳定具有显著的能量影响。这些结果提供了证据,表明在大多数X射线晶体结构中难以区分的细微几何效应可能具有重大的能量后果,并突出了使用协同实验方法剖析酶功能的重要性。