Suppr超能文献

利用废旧轮胎橡胶制备的碳质吸附剂对汞的吸附作用。

Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes.

作者信息

Manchón-Vizuete E, Macías-García A, Nadal Gisbert A, Fernández-González C, Gómez-Serrano V

机构信息

Departamento de Química Inorgánica, Universidad de Extremadura, 06071 Badajoz, Spain.

出版信息

J Hazard Mater. 2005 Mar 17;119(1-3):231-8. doi: 10.1016/j.jhazmat.2004.12.028.

Abstract

Rubber from tyre wastes has been used to prepare carbonaceous adsorbents and the products obtained have been tested as adsorbents for mercury in aqueous solution. The adsorbents have been prepared by applying thermal, chemical and combined (thermal and chemical or vice versa) treatments. Tyre rubber has been: heated at 400 or 900 degrees C for 2 h in N2, chemically-treated with H2SO4, HNO3 or H2SO4/HNO3 solution for 24 h, and in two successive steps first heated at 400 degrees C for 2h in N2 and then treated with a H2SO4/HNO3 solution for 24 h, or vice versa. Resultant products have been characterised in terms of elementary composition and textural properties. The adsorption of mercury has been studied from kinetic and equilibrium standpoints. The treatments effected to tyre rubber decrease the carbon content and the hydrogen content. The oxygen content and the nitrogen content increase for the chemically-treated products. The heat treatment of tyre rubber results in a larger development of surface area, microporosity, and mesoporosity than the chemical treatments. These treatments, however, produce a great creation of macropores. In comparison to the starting rubber, the adsorption process of mercury is faster when the material is heated or treated with the H2SO4, HNO3 or 1:3 H2SO4/HNO3 solution. These adsorbents are either a non-porous solid or possess a high mesopore volume or a wide pore size distribution in the macropore range. The adsorption capacity is larger for products prepared by heat, chemical and combined treatments of the rubber. A common textural characteristic of these adsorbents is their better developed microporosity. The ability to adsorb mercury is higher for the heated products than for the chemically-treated ones. The maximum adsorption of mercury is 211 mg g(-1). The constant Kf of the Freundlich equation is as high as 108.9 mg g(-1).

摘要

来自轮胎废料的橡胶已被用于制备含碳吸附剂,所得产品已作为水溶液中汞的吸附剂进行了测试。这些吸附剂通过热、化学以及联合(热与化学,或反之)处理制备而成。轮胎橡胶已进行如下处理:在氮气氛围中于400或900摄氏度加热2小时;用硫酸、硝酸或硫酸/硝酸溶液进行24小时化学处理;分两个连续步骤,先在氮气氛围中于400摄氏度加热2小时,然后用硫酸/硝酸溶液处理24小时,或反之。所得产品已根据元素组成和结构性质进行了表征。已从动力学和平衡角度研究了汞的吸附情况。对轮胎橡胶进行的处理降低了碳含量和氢含量。化学处理后的产品中氧含量和氮含量增加。与化学处理相比,轮胎橡胶的热处理导致表面积、微孔率和中孔率有更大程度的发展。然而,这些处理会产生大量大孔。与起始橡胶相比,当材料加热或用硫酸、硝酸或1:3硫酸/硝酸溶液处理时,汞的吸附过程更快。这些吸附剂要么是无孔固体,要么具有高的中孔体积,要么在大孔范围内具有宽的孔径分布。通过橡胶的热、化学和联合处理制备的产品吸附容量更大。这些吸附剂的一个共同结构特征是其微孔有更好的发展。加热产品吸附汞的能力高于化学处理产品。汞的最大吸附量为211毫克/克。弗伦德利希方程的常数Kf高达108.9毫克/克。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验