Wanner G, Schroeder-Reiter E, Formanek H
Department of Biology I, Ludwig-Maximillians-Universitat Munchen, Munich, Germany.
Cytogenet Genome Res. 2005;109(1-3):70-8. doi: 10.1159/000082384.
Three-dimensional mitotic plant chromosome architecture can be investigated with the highest resolution with scanning electron microscopy compared to other microscopic techniques at present. Specific chromatin staining techniques making use of simultaneous detection of back-scattered electrons and secondary electrons have provided conclusive information on the distribution of DNA and protein in barley chromosomes through mitosis. Applied to investigate the structural effects of different preparative procedures, these techniques were the groundwork for the "dynamic matrix model" for chromosome condensation, which postulates an energy-dependent process of looping and bunching of chromatin coupled with attachment to a dynamic matrix of associated protein fibers. Data from SEM analysis shows basic higher order chromatin structures: chromomeres and matrix fibers. Visualization of nanogold-labeled phosphorylated histone H3 (ser10) with high resolution on chromomeres shows that functional modifications of chromatin can be located on structural elements in a 3D context.
与目前其他显微技术相比,利用扫描电子显微镜可以以最高分辨率研究三维有丝分裂植物染色体结构。利用背散射电子和二次电子同时检测的特定染色质染色技术,提供了关于大麦染色体在有丝分裂过程中DNA和蛋白质分布的确凿信息。应用这些技术来研究不同制备程序的结构效应,为染色体凝聚的“动态基质模型”奠定了基础,该模型假定染色质的环化和成束是一个能量依赖过程,并与附着在相关蛋白质纤维的动态基质上有关。扫描电子显微镜分析的数据显示了基本的高阶染色质结构:染色粒和基质纤维。在染色粒上以高分辨率可视化纳米金标记的磷酸化组蛋白H3(ser10)表明,染色质的功能修饰可以在三维环境中的结构元件上定位。