Feldman M, Levy A A
Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Cytogenet Genome Res. 2005;109(1-3):250-8. doi: 10.1159/000082407.
Recent studies have shown that allopolyploidy accelerates genome evolution in wheat in two ways: (1) allopolyploidization triggers rapid genome changes (revolutionary changes) through the instantaneous generation of a variety of cardinal genetic and epigenetic alterations, and (2) the allopolyploid condition facilitates sporadic genomic changes during the life of the species (evolutionary changes) that are not attainable at the diploid level. The revolutionary changes comprise (1) non-random elimination of coding and non-coding DNA sequences, (2) epigenetic changes such as DNA methylation of coding and non-coding DNA leading, among others, to gene silencing, (3) activation of genes and retroelements which in turn alters the expression of adjacent genes. These highly reproducible changes occur in the F1 hybrids or in the first generation(s) of the nascent allopolyploids and were similar to those that occurred twice in nature: first in the formation of allotetraploid wheat (approximately 0.5 million years ago) and second in the formation of hexaploid wheat (approximately 10,000 years ago). Elimination of non-coding sequences from one of the two homoeologous pairs in tetraploids and from two homoeologous pairs in hexaploids, augments the differentiation of homoeologous chromosomes at the polyploid level, thus providing the physical basis for the diploid-like meiotic behavior of allopolyploid wheat. Regulation of gene expression may lead to improved inter-genomic interactions. Gene inactivation brings about rapid diploidization while activation of genes through demethylation or through transcriptional activation of retroelements altering the expression of adjacent genes, leads to novel expression patterns. The evolutionary changes comprise (1) horizontal inter-genomic transfer of chromosome segments between the constituent genomes, (2) production of recombinant genomes through hybridization and introgression between different allopolyploid species or, more seldom, between allopolyploids and diploids, and (3) mutations. These phenomena, emphasizing the plasticity of the genome with regards to both structure and function, might improve the adaptability of the newly formed allopolyploids and facilitate their rapid and successful establishment in nature.
最近的研究表明,异源多倍体通过两种方式加速小麦的基因组进化:(1)异源多倍体化通过瞬间产生各种主要的遗传和表观遗传改变,引发快速的基因组变化(革命性变化);(2)异源多倍体状态促进物种生命周期中零星的基因组变化(进化性变化),而这种变化在二倍体水平上是无法实现的。革命性变化包括:(1)编码和非编码DNA序列的非随机消除;(2)表观遗传变化,如编码和非编码DNA的DNA甲基化,这尤其会导致基因沉默;(3)基因和反转录元件的激活,进而改变相邻基因的表达。这些高度可重复的变化发生在F1杂种或新生异源多倍体的第一代中,并且与自然界中发生过两次的变化相似:第一次是在异源四倍体小麦的形成过程中(约50万年前),第二次是在六倍体小麦的形成过程中(约1万年前)。四倍体中两个同源对之一以及六倍体中两个同源对的非编码序列的消除,增强了多倍体水平上同源染色体的分化,从而为异源多倍体小麦类似二倍体的减数分裂行为提供了物质基础。基因表达的调控可能会改善基因组间的相互作用。基因失活导致快速二倍体化,而通过去甲基化或通过反转录元件的转录激活来激活基因,从而改变相邻基因的表达,则会导致新的表达模式。进化性变化包括:(1)组成基因组之间染色体片段的水平基因组间转移;(2)通过不同异源多倍体物种之间或更罕见的异源多倍体与二倍体之间的杂交和渗入产生重组基因组;(3)突变。这些现象强调了基因组在结构和功能方面的可塑性,可能会提高新形成的异源多倍体的适应性,并促进它们在自然界中快速成功地建立。