Suppr超能文献

纤维素酶、梭菌与乙醇。

Cellulase, clostridia, and ethanol.

作者信息

Demain Arnold L, Newcomb Michael, Wu J H David

机构信息

Charles A. Dana Research Institute for Scientists Emeriti, HS-330, Drew University, Madison, NJ 07940, USA.

出版信息

Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54. doi: 10.1128/MMBR.69.1.124-154.2005.

Abstract

Biomass conversion to ethanol as a liquid fuel by the thermophilic and anaerobic clostridia offers a potential partial solution to the problem of the world's dependence on petroleum for energy. Coculture of a cellulolytic strain and a saccharolytic strain of Clostridium on agricultural resources, as well as on urban and industrial cellulosic wastes, is a promising approach to an alternate energy source from an economic viewpoint. This review discusses the need for such a process, the cellulases of clostridia, their presence in extracellular complexes or organelles (the cellulosomes), the binding of the cellulosomes to cellulose and to the cell surface, cellulase genetics, regulation of their synthesis, cocultures, ethanol tolerance, and metabolic pathway engineering for maximizing ethanol yield.

摘要

嗜热厌氧梭菌将生物质转化为乙醇作为液体燃料,为解决世界能源依赖石油的问题提供了一种潜在的部分解决方案。从经济角度来看,在农业资源以及城市和工业纤维素废物上共培养梭菌的纤维素分解菌株和糖分解菌株,是一种有前景的替代能源获取途径。本文综述了这种工艺的必要性、梭菌的纤维素酶、它们在细胞外复合物或细胞器(纤维小体)中的存在情况、纤维小体与纤维素及细胞表面的结合、纤维素酶遗传学、其合成的调控、共培养、乙醇耐受性以及为使乙醇产量最大化的代谢途径工程。

相似文献

1
Cellulase, clostridia, and ethanol.
Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54. doi: 10.1128/MMBR.69.1.124-154.2005.
2
The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
Int J Biol Sci. 2009 Jul 29;5(5):500-16. doi: 10.7150/ijbs.5.500.
3
Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
Bioresour Technol. 2018 Feb;250:860-867. doi: 10.1016/j.biortech.2017.11.048. Epub 2017 Nov 22.
4
Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.
Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. eCollection 2016 Feb.
5
Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.
J Ind Microbiol Biotechnol. 2017 Jun;44(6):825-834. doi: 10.1007/s10295-017-1915-2. Epub 2017 Feb 8.
6
Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16165-9. doi: 10.1073/pnas.0605381103. Epub 2006 Oct 23.
7
Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity.
Bioengineered. 2013 Jan-Feb;4(1):15-20. doi: 10.4161/bioe.21951. Epub 2012 Aug 24.
9
Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation.
J Biotechnol. 2013 Oct 10;168(1):62-3. doi: 10.1016/j.jbiotec.2013.08.011. Epub 2013 Aug 19.
10
Structure of the catalytic domain of the Clostridium thermocellum cellulase CelT.
Acta Crystallogr D Biol Crystallogr. 2012 Mar;68(Pt 3):310-20. doi: 10.1107/S0907444912001990. Epub 2012 Feb 14.

引用本文的文献

1
From Lignocellulosic Residues to Protein Sources: Insights into Biomass Pre-Treatments and Conversion.
Polymers (Basel). 2025 Aug 20;17(16):2251. doi: 10.3390/polym17162251.
2
A distinct class of ferredoxin:NADP oxidoreductase enzymes driving thermophilic ethanol production.
J Biol Chem. 2025 May 21;301(7):110263. doi: 10.1016/j.jbc.2025.110263.
3
Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance.
Front Microbiol. 2025 Apr 25;16:1583746. doi: 10.3389/fmicb.2025.1583746. eCollection 2025.
4
5
Extracytoplasmic polysaccharides control cellulosomal and non-cellulosomal systems in Herbivorax saccincola A7.
Appl Microbiol Biotechnol. 2024 Oct 1;108(1):477. doi: 10.1007/s00253-024-13310-3.
6
Efficient Bioconversion of Mango Waste into Ethanol Employing Plackett-Burman and Central Composite Models.
ACS Omega. 2024 Sep 13;9(38):39652-39662. doi: 10.1021/acsomega.4c04374. eCollection 2024 Sep 24.
7
Coconut rhinoceros beetle digestive symbiosis with potential plant cell wall degrading microbes.
NPJ Biofilms Microbiomes. 2024 Mar 30;10(1):34. doi: 10.1038/s41522-024-00505-9.
8
Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression.
ACS Synth Biol. 2024 Apr 19;13(4):1237-1245. doi: 10.1021/acssynbio.3c00735. Epub 2024 Mar 22.
10
Enzymatic degradation of cellulose in soil: A review.
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.

本文引用的文献

1
Properties of acetate kinase activity in Clostridium thermocellum cell extracts.
Appl Biochem Biotechnol. 1998 Feb;69(2):137-45. doi: 10.1007/BF02919395.
3
Fuel ethanol from cellulosic biomass.
Science. 1991 Mar 15;251(4999):1318-23. doi: 10.1126/science.251.4999.1318.
4
Biomass refining.
Science. 1982 Nov 12;218(4573):643-6. doi: 10.1126/science.218.4573.643.
5
The Culture and Physiology of a Thermophilic Cellulose-fermenting Bacterium.
J Bacteriol. 1948 Nov;56(5):653-63. doi: 10.1128/jb.56.5.653-663.1948.
6
Subunit Composition and Glycosidic Activities of the Cellulase Complex from Clostridium thermocellum JW20.
Appl Environ Microbiol. 1990 Dec;56(12):3798-804. doi: 10.1128/aem.56.12.3798-3804.1990.
7
Enhanced Cellulose Fermentation by an Asporogenous and Ethanol-Tolerant Mutant of Clostridium thermocellum.
Appl Environ Microbiol. 1989 Jan;55(1):207-11. doi: 10.1128/aem.55.1.207-211.1989.
8
Characterization of Clostridium thermocellum JW20.
Appl Environ Microbiol. 1988 Jan;54(1):204-211. doi: 10.1128/aem.54.1.204-211.1988.
9
Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy.
Appl Environ Microbiol. 1987 Dec;53(12):2785-92. doi: 10.1128/aem.53.12.2785-2792.1987.
10
Properties of a Clostridium thermocellum Endoglucanase Produced in Escherichia coli.
Appl Environ Microbiol. 1986 Jun;51(6):1293-9. doi: 10.1128/aem.51.6.1293-1299.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验