Suppr超能文献

植物相关细菌对宿主-微生物相互作用中涉及的信号的检测与响应。

Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria.

作者信息

Brencic Anja, Winans Stephen C

机构信息

Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA.

出版信息

Microbiol Mol Biol Rev. 2005 Mar;69(1):155-94. doi: 10.1128/MMBR.69.1.155-194.2005.

Abstract

Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.

摘要

宿主与微生物之间多样的相互作用是由对宿主释放的化学信号的检测所引发的。对这些信号的检测会导致基因表达模式的改变,最终引起细菌生理学上特定的适应性变化,而这些变化是这些相互作用所必需的。这一概念最初是在根瘤菌科成员中得到证实的,后来发现也适用于许多其他与植物相关的细菌以及定殖于人类和动物宿主的微生物。根瘤菌科包括各种根瘤菌属以及土壤杆菌属的物种。根瘤菌是豆科植物的共生体,在根瘤内固定氮,而根癌土壤杆菌是一种病原体,可在多种植物上引发冠瘿瘤。这些细菌所识别的植物释放信号是低分子量的可扩散分子,并通过特定的受体蛋白被细菌检测到。在其他植物病原体中也观察到类似现象,包括丁香假单胞菌、青枯雷尔氏菌和欧文氏菌属,不过这里的信号和信号受体并未得到很好的界定。在某些情况下,诸如铁限制或缺乏氮源等营养条件似乎提供了一个重要线索。尽管在过去20年里我们对宿主检测过程已经有了很多了解,但我们的知识还远未完备。植物 - 微生物相互作用的复杂性使得在自然环境中全面了解宿主检测极具挑战性,因此许多信号和信号识别系统仍有待描述。

相似文献

1
Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria.
Microbiol Mol Biol Rev. 2005 Mar;69(1):155-94. doi: 10.1128/MMBR.69.1.155-194.2005.
2
Quorum sensing in plant-pathogenic bacteria.
Annu Rev Phytopathol. 2003;41:455-82. doi: 10.1146/annurev.phyto.41.052002.095652. Epub 2003 Apr 29.
3
Molecular signals in the interactions between plants and microbes.
Cell. 1992 Oct 16;71(2):191-9. doi: 10.1016/0092-8674(92)90348-g.
4
Initial interactions of Agrobacterium tumefaciens with plant host cells.
Crit Rev Microbiol. 1986;13(3):281-307. doi: 10.3109/10408418609108740.
5
Biofilm formation by plant-associated bacteria.
Annu Rev Microbiol. 2007;61:401-22. doi: 10.1146/annurev.micro.61.080706.093316.
6
[Current concepts on the pathogenicity of phytopathogenic bacteria].
C R Acad Sci III. 2001 Oct;324(10):915-22. doi: 10.1016/s0764-4469(01)01375-0.
7
Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia.
Appl Microbiol Biotechnol. 2013 Dec;97(23):10117-34. doi: 10.1007/s00253-013-5248-4. Epub 2013 Oct 3.
8
Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions.
Cell Microbiol. 2009 Mar;11(3):381-8. doi: 10.1111/j.1462-5822.2009.01282.x.

引用本文的文献

2
Quorum Signaling Molecules: Interactions Between Plants and Associated Pathogens.
Int J Mol Sci. 2025 May 29;26(11):5235. doi: 10.3390/ijms26115235.
3
Xenosiderophores: bridging the gap in microbial iron acquisition strategies.
World J Microbiol Biotechnol. 2025 Feb 13;41(2):69. doi: 10.1007/s11274-025-04287-w.
4
The hidden language of plant-beneficial microbes: chemo-signaling dynamics in plant microenvironments.
World J Microbiol Biotechnol. 2025 Jan 13;41(2):35. doi: 10.1007/s11274-025-04253-6.
7
Calcium modulation of bacterial wilt disease on potato.
Appl Environ Microbiol. 2024 May 21;90(5):e0024224. doi: 10.1128/aem.00242-24. Epub 2024 May 1.
10
: A Bacterium Primed for Synthetic Biology.
Biodes Res. 2020 May 26;2020:8189219. doi: 10.34133/2020/8189219. eCollection 2020.

本文引用的文献

1
Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes.
Plant Mol Biol. 1989 Jan;12(1):59-73. doi: 10.1007/BF00017448.
3
4
Bacterial colonization of leaves: a spectrum of strategies.
Phytopathology. 1999 May;89(5):353-9. doi: 10.1094/PHYTO.1999.89.5.353.
6
The secret life of foliar bacterial pathogens on leaves.
Annu Rev Phytopathol. 1995;33:145-72. doi: 10.1146/annurev.py.33.090195.001045.
8
Release and Modification of nod-Gene-Inducing Flavonoids from Alfalfa Seeds.
Plant Physiol. 1991 Mar;95(3):804-7. doi: 10.1104/pp.95.3.804.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验