Dirr Heini W, Little Tessa, Kuhnert Diane C, Sayed Yasien
Protein Structure-Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
J Biol Chem. 2005 May 20;280(20):19480-7. doi: 10.1074/jbc.M413608200. Epub 2005 Mar 9.
Helix 9, the major structural element in the C-terminal region of class Alpha glutathione transferases, forms part of the active site of these enzymes where its dynamic properties modulate both catalytic and ligandin functions. A conserved aspartic acid N-capping motif for helix 9 was identified by sequence alignments of the C-terminal regions of class Alpha glutathione S-transferases (GSTs) and an analysis by the helix-coil algorithm AGADIR. The contribution of the N-capping motif to the stability and dynamics of the region was investigated by replacing the N-cap residue Asp-209 with a glycine in human glutathione S-transferase A1-1 (hGST A1-1) and in a peptide corresponding to its C-terminal region. Far-UV circular dichroism and AGADIR analyses indicate that, in the absence of tertiary interactions, the wild-type peptide displays a low intrinsic tendency to form a helix and that this tendency is reduced significantly by the Asp-to-Gly mutation. Disruption of the N-capping motif of helix 9 in hGST A1-1 alters the conformational dynamics of the C-terminal region and, consequently, the features of the H-site to which hydrophobic substrates (e.g. 1-chloro-2,4-dinitrobenzene (CDNB)) and nonsubstrates (e.g. 8-anilino-1-naphthalene sulfonate (ANS)) bind. Isothermal calorimetric and fluorescence data for complex formation between ANS and protein suggest that the D209G-induced perturbation in the C-terminal region prevents normal ligand-induced localization of the region at the active site, resulting in a less hydrophobic and more solvent-exposed H-site. Therefore, the catalytic efficiency of the enzyme with CDNB is diminished due to a lowered affinity for the electrophilic substrate and a lower stabilization of the transition state.
螺旋9是α类谷胱甘肽转移酶C端区域的主要结构元件,构成了这些酶活性位点的一部分,其动态特性调节催化和配体结合功能。通过对α类谷胱甘肽S -转移酶(GSTs)C端区域的序列比对以及螺旋 - 卷曲算法AGADIR分析,确定了螺旋9的保守天冬氨酸N - 封端基序。通过将人谷胱甘肽S -转移酶A1 - 1(hGST A1 - 1)及其C端区域对应的肽段中的N - 封端残基天冬氨酸 - 209替换为甘氨酸,研究了N - 封端基序对该区域稳定性和动力学的影响。远紫外圆二色性和AGADIR分析表明,在没有三级相互作用的情况下,野生型肽形成螺旋的内在倾向较低,而天冬氨酸到甘氨酸的突变显著降低了这种倾向。hGST A1 - 1中螺旋9的N - 封端基序的破坏改变了C端区域的构象动力学,从而改变了疏水底物(如1 - 氯 - 2,4 -二硝基苯(CDNB))和非底物(如8 - 苯胺基 - 1 -萘磺酸盐(ANS))结合的H位点的特征。ANS与蛋白质之间复合物形成的等温滴定量热和荧光数据表明.C端区域中D209G诱导的扰动阻止了该区域在活性位点正常的配体诱导定位,导致H位点疏水性降低且更多地暴露于溶剂中。因此,由于对亲电底物的亲和力降低以及过渡态稳定性降低,该酶对CDNB的催化效率降低。