Morgan Jacob L W, McNamara Joshua T, Fischer Michael, Rich Jamie, Chen Hong-Ming, Withers Stephen G, Zimmer Jochen
University of Virginia School of Medicine, Center for Membrane Biology, Molecular Physiology and Biological Physics, 480 Ray C. Hunt Drive, Charlottesville, Virginia 22908, USA.
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
Nature. 2016 Mar 17;531(7594):329-34. doi: 10.1038/nature16966. Epub 2016 Mar 9.
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.
许多生物聚合物,包括多糖,必须穿过至少一层膜才能到达其生物学功能位点。纤维素是一种由膜整合型纤维素合酶合成并分泌的线性葡萄糖聚合物。在此,利用具有催化活性的细菌纤维素合酶BcsA - BcsB复合物进行的晶体酶学研究揭示了从底物结合到聚合物转运的完整纤维素生物合成循环的结构快照。BcsA的底物结合和产物结合结构为底物识别提供了基础,并展示了纤维素的逐步延伸。此外,这些结构快照表明,BcsA通过一种棘轮机制转运纤维素,该机制涉及一个与聚合物末端葡萄糖接触的“指状螺旋”。与BcsA的门控环协同作用,指状螺旋分别响应底物结合和聚合物延伸而“向上”和“向下”移动,从而将延伸的聚合物推入BcsA的跨膜通道。通过系留BcsA的指状螺旋进行实验验证了该机制,这抑制了聚合物转运但不影响延伸。