Suppr超能文献

基于小波域顺序源分离的胎儿心电图提取

Fetal electrocardiogram extraction by sequential source separation in the wavelet domain.

作者信息

Jafari Maria G, Chambers Jonathon A

机构信息

Centre for Digital Music, Department of Electronic Engineering, Queen Mary University of London, London, E1 4NS, UK.

出版信息

IEEE Trans Biomed Eng. 2005 Mar;52(3):390-400. doi: 10.1109/TBME.2004.842958.

Abstract

This paper addresses the problem of fetal electrocardiogram extraction using blind source separation (BSS) in the wavelet domain. A new approach is proposed, which is particularly advantageous when the mixing environment is noisy and time-varying, and that is shown, analytically and in simulation, to improve the convergence rate of the natural gradient algorithm. The distribution of the wavelet coefficients of the source signals is then modeled by a generalized Gaussian probability density, whereby in the time-scale domain the problem of selecting appropriate nonlinearities when separating mixtures of both sub- and super-Gaussian signals is mitigated, as shown by experimental results.

摘要

本文探讨了在小波域中使用盲源分离(BSS)提取胎儿心电图的问题。提出了一种新方法,当混合环境嘈杂且时变时,该方法具有特别的优势,并且通过理论分析和仿真表明,该方法能够提高自然梯度算法的收敛速度。然后,用广义高斯概率密度对源信号的小波系数分布进行建模,实验结果表明,由此在时间尺度域中,在分离亚高斯和超高斯信号混合时选择合适非线性的问题得到了缓解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验