Suppr超能文献

使用H∞自适应算法提取胎儿心电图。

Extraction of fetal electrocardiogram using H(infinity) adaptive algorithms.

作者信息

Puthusserypady Sadasivan

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576.

出版信息

Med Biol Eng Comput. 2007 Oct;45(10):927-37. doi: 10.1007/s11517-007-0235-5. Epub 2007 Aug 21.

Abstract

The fetal electrocardiogram (fECG) contains important information regarding the health of the fetus. However, the fECG obtained noninvasively from the abdominal surface electrical recordings of a pregnant woman are dominated by strong interference from the maternal electrocardiogram (mECG). In this paper, based on the H(infinity) principle, two adaptive algorithms are proposed for the extraction of fECG from the trans-abdominal recordings of pregnant women. The motivation behind the application of H(infinity) techniques is the fact that they are robust with respect to model uncertainties and lack of statistical information regarding noise. The proposed algorithms are applied to simulated as well as real multichannel ECG recordings and their performances are compared to that of the well-known least-mean-square (LMS) adaptive algorithm. It is found that the proposed H(infinity) based algorithms perform superior to the LMS algorithm in extracting the fECG signal.

摘要

胎儿心电图(fECG)包含有关胎儿健康的重要信息。然而,从孕妇腹部表面电记录无创获取的fECG受到母体心电图(mECG)强烈干扰的主导。本文基于H无穷范数原理,提出了两种自适应算法,用于从孕妇的经腹记录中提取fECG。应用H无穷范数技术背后的动机是,它们对于模型不确定性以及缺乏关于噪声的统计信息具有鲁棒性。所提出的算法应用于模拟以及真实的多通道心电图记录,并将其性能与著名的最小均方(LMS)自适应算法的性能进行比较。结果发现,所提出的基于H无穷范数的算法在提取fECG信号方面比LMS算法表现更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验