Suppr超能文献

使用NONMEM和NLMIXED估计一些重复测量有序数据模型中总体参数的偏差。

Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED.

作者信息

Jönsson Siv, Kjellsson Maria C, Karlsson Mats O

机构信息

Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.

出版信息

J Pharmacokinet Pharmacodyn. 2004 Aug;31(4):299-320. doi: 10.1023/b:jopa.0000042738.06821.61.

Abstract

The application of proportional odds models to ordered categorical data using the mixed-effects modeling approach has become more frequently reported within the pharmacokinetic/pharmacodynamic area during the last decade. The aim of this paper was to investigate the bias in parameter estimates, when models for ordered categorical data were estimated using methods employing different approximations of the likelihood integral; the Laplacian approximation in NONMEM (without and with the centering option) and NLMIXED, and the Gaussian quadrature approximations in NLMIXED. In particular, we have focused on situations with non-even distributions of the response categories and the impact of interpatient variability. This is a Monte Carlo simulation study where original data sets were derived from a known model and fixed study design. The simulated response was a four-category variable on the ordinal scale with categories 0, 1, 2 and 3. The model used for simulation was fitted to each data set for assessment of bias. Also, simulations of new data based on estimated population parameters were performed to evaluate the usefulness of the estimated model. For the conditions tested, Gaussian quadrature performed without appreciable bias in parameter estimates. However, markedly biased parameter estimates were obtained using the Laplacian estimation method without the centering option, in particular when distributions of observations between response categories were skewed and when the interpatient variability was moderate to large. Simulations under the model could not mimic the original data when bias was present, but resulted in overestimation of rare events. The bias was considerably reduced when the centering option in NONMEM was used. The cause for the biased estimates appears to be related to the conditioning on uninformative and uncertain empirical Bayes estimate of interindividual random effects during the estimation, in conjunction with the normality assumption.

摘要

在过去十年中,使用混合效应建模方法将比例优势模型应用于有序分类数据在药代动力学/药效学领域的报道越来越频繁。本文的目的是研究当使用采用不同似然积分近似方法估计有序分类数据模型时参数估计中的偏差;NONMEM中的拉普拉斯近似(有无中心化选项)和NLMIXED,以及NLMIXED中的高斯求积近似。特别是,我们关注了响应类别分布不均的情况以及个体间变异性的影响。这是一项蒙特卡罗模拟研究,原始数据集来自已知模型和固定的研究设计。模拟的响应是一个有序尺度上的四类变量,类别为0、1、2和3。用于模拟的模型被拟合到每个数据集以评估偏差。此外,基于估计的总体参数对新数据进行了模拟,以评估估计模型的有用性。在所测试的条件下,高斯求积在参数估计中没有明显偏差。然而,使用没有中心化选项的拉普拉斯估计方法获得了明显有偏差的参数估计,特别是当响应类别之间的观测分布有偏斜且个体间变异性为中度至大时。当存在偏差时,模型下的模拟无法模拟原始数据,而是导致对罕见事件的高估。当使用NONMEM中的中心化选项时,偏差大大降低。估计有偏差的原因似乎与估计过程中对个体间随机效应的无信息和不确定经验贝叶斯估计的条件设定以及正态性假设有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验