Subramanian Usha, Weiner Michael, Gradus-Pizlo Irmina, Wu Jingwei, Tu Wanzhu, Murray Michael D
Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202, USA.
Heart Lung. 2005 Mar-Apr;34(2):89-98. doi: 10.1016/j.hrtlng.2004.05.002.
To assess the agreement between 2 methods of assigning New York Heart Association (NYHA) functional class to patients with chronic heart failure (CHF): deriving NYHA class from self-report interview data versus clinician assignment. To then determine the ability of each method to predict all-cause hospitalization.
Adults with CHF > or = 50 years old from an urban health system in Indianapolis, Indiana, were administered the Kansas City Cardiomyopathy Questionnaire (a validated CHF symptom questionnaire) at baseline. Patient self-reported functional data were then used to derive NYHA class. Clinical providers who were blinded to patients' questionnaire data independently assessed NYHA functional class. We used a weighted kappa statistic to evaluate the agreement between the NYHA class from patient-derived and that from provider-assigned methods. We then assessed the ability of patient and provider NYHA to predict time to hospitalization using Cox proportional hazards models.
Of 156 patients with complete 6-month follow-up (mean age 63 years +/- 9 SD, 53% African American, and 68% women), the correlation coefficient was 0.43 between the patient-derived and provider-assigned NYHA methods. The weighted kappa statistic was 0.278, and the 95% confidence interval was 0.18 to 0.37, indicating only slight agreement. Patients classified themselves in worse categories than did their providers. Provider-assigned NYHA was a better predictor of hospitalization (P = .06).
There is only slight agreement between patient-derived and clinician-assigned NYHA functional class. A different approach with patients may be needed if providers hope to use patients' reports to identify those at risk for hospitalization.
评估两种为慢性心力衰竭(CHF)患者分配纽约心脏协会(NYHA)心功能分级方法之间的一致性:从自我报告访谈数据得出NYHA分级与临床医生分配分级。然后确定每种方法预测全因住院的能力。
来自印第安纳州印第安纳波利斯市一个城市卫生系统的年龄≥50岁的CHF成年患者在基线时接受堪萨斯城心肌病问卷(一种经过验证的CHF症状问卷)。然后使用患者自我报告的功能数据得出NYHA分级。对患者问卷数据不知情的临床医生独立评估NYHA心功能分级。我们使用加权kappa统计量来评估患者得出的NYHA分级与医生分配方法得出的NYHA分级之间的一致性。然后我们使用Cox比例风险模型评估患者和医生的NYHA分级预测住院时间的能力。
在156例有完整6个月随访的患者中(平均年龄63岁±9标准差,53%为非裔美国人,68%为女性),患者得出的NYHA方法与医生分配的NYHA方法之间的相关系数为0.43。加权kappa统计量为0.278,95%置信区间为0.18至0.37,表明仅有轻微一致性。患者将自己分类到比医生更差的类别。医生分配的NYHA分级是更好的住院预测指标(P = 0.06)。
患者得出的NYHA心功能分级与临床医生分配的分级之间仅有轻微一致性。如果医生希望使用患者报告来识别有住院风险的患者,可能需要采用不同的方法与患者沟通。