Goorley Tim, Zamenhof Robert, Nikjoo Hooshang
Applied Physics, Los Alamos National Laboratory, X-Division, Mail Stop F663, Los Alamos, NM 87545, USA.
Int J Radiat Biol. 2004 Nov-Dec;80(11-12):933-40. doi: 10.1080/09553000400017564.
To calculate the number of 157Gadolinium (157Gd) neutron capture induced DNA double strand breaks (DSB) in tumor cells resulting from epithermal neutron irradiation of a human head when the peak tissue dose is 10 Gy. To assess the lethality of these Gd induced DSB. MATRIALS AND METHODS: DNA single and double strand breaks from Auger electrons emitted during 157Gd(n,gamma) events were calculated using an atomistic model of B-DNA with higher-order structure. When combined with gadolinium neutron capture reaction rates and neutron and photon physical dose rates calculated from the radiation transport through a model of the human head with explicit tumors, peak tissue dose can be related to the number of Auger electron induced DSB in tumor cell DNA. The lethality of these DNA DSB were assessed through a comparison with incorporated 125I decay cell survival curves and second comparison with the number of DSB resulting from neutron and photon interactions.
These calculations on a molecular scale (microscopic calculations) indicate that for incorporated 157Gd, each neutron capture reaction results in an average of 1.56 +/- 0.16 DNA single strand breaks (SSB) and 0.21 +/- 0.04 DBS in the immediate vicinity (approximately 40 nm) of the neutron capture. In an example case of Gd Neutron Capture Therapy (GdNCT), a 1 cm radius midline tumor, peak normal tissue dose of 10 Gy, and a tumor concentration of 1000 ppm Gd, result in a maximum of 140 +/- 27 DSBs per tumor cell.
The number of DSB from the background radiation components is one order of magnitude lower than the Gd Auger electron induced DSB. The cell survival of mammalian cell lines with a similar amount of complex DSB induced from incorporated 125I decay yield one to two magnitudes of cell killing. These two points indicate that gadolinium auger electrons could significantly contribute to cell killing in GdNCT.
计算当峰值组织剂量为10 Gy时,人体头部经超热中子辐照后,肿瘤细胞中157钆(157Gd)中子俘获诱导的DNA双链断裂(DSB)数量。评估这些钆诱导的DSB的致死性。材料与方法:利用具有高阶结构的B-DNA原子模型,计算157Gd(n,γ)事件中发射的俄歇电子导致的DNA单链和双链断裂。当与钆中子俘获反应速率以及通过具有明确肿瘤的人体头部模型的辐射传输计算出的中子和光子物理剂量率相结合时,峰值组织剂量可与肿瘤细胞DNA中俄歇电子诱导的DSB数量相关。通过与掺入125I衰变细胞存活曲线进行比较以及与中子和光子相互作用产生的DSB数量进行第二次比较,评估这些DNA DSB的致死性。
这些分子尺度的计算(微观计算)表明,对于掺入的157Gd,每次中子俘获反应在中子俘获的紧邻区域(约40 nm)平均产生1.56±0.16个DNA单链断裂(SSB)和0.21±0.04个双链断裂(DBS)。在一个钆中子俘获治疗(GdNCT)的示例中,一个半径为1 cm的中线肿瘤,正常组织峰值剂量为10 Gy,肿瘤中钆浓度为1000 ppm,每个肿瘤细胞最多产生140±27个DSB。
背景辐射成分产生的DSB数量比钆俄歇电子诱导的DSB低一个数量级。具有类似数量由掺入的125I衰变诱导的复杂DSB的哺乳动物细胞系的细胞存活导致一到两个数量级的细胞杀伤。这两点表明钆俄歇电子在GdNCT中可显著促进细胞杀伤。