Suppr超能文献

通过双砷标记对活细胞中1型人类免疫缺陷病毒gag进行动态荧光成像。

Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling.

作者信息

Rudner Lynnie, Nydegger Sascha, Coren Lori V, Nagashima Kunio, Thali Markus, Ott David E

机构信息

Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA.

出版信息

J Virol. 2005 Apr;79(7):4055-65. doi: 10.1128/JVI.79.7.4055-4065.2005.

Abstract

Human immunodeficiency virus type 1 (HIV-1) Gag is the primary structural protein of the virus and is sufficient for particle formation. We utilized the recently developed biarsenical-labeling method to dynamically observe HIV-1 Gag within live cells by adding a tetracysteine tag (C-C-P-G-C-C) to the C terminus of Gag in both Pr55Gag expression and full-length proviral constructs. Membrane-permeable biarsenical compounds FlAsH and ReAsH covalently bond to this tetracysteine sequence and specifically fluoresce, effectively labeling Gag in the cell. Biarsenical labeling readily and specifically detected a tetracysteine-tagged HIV-1 Gag protein (Gag-TC) in HeLa, Mel JuSo, and Jurkat T cells by deconvolution fluorescence microscopy. Gag-TC was localized primarily at or near the plasma membrane in all cell types examined. Fluorescent two-color analysis of Gag-TC in HeLa cells revealed that nascent Gag was present mostly at the plasma membrane in distinct regions. Intracellular imaging of a Gag-TC myristylation mutant observed a diffuse signal throughout the cell, consistent with the role of myristylation in Gag localization to the plasma membrane. In contrast, mutation of the L-domain core sequence did not appreciably alter the localization of Gag, suggesting that the PTAP L domain functions at the site of budding rather than as a targeting signal. Taken together, our results show that Gag concentrates in specific plasma membrane areas rapidly after translation and demonstrate the utility of biarsenical labeling for visualizing the dynamic localization of Gag.

摘要

人类免疫缺陷病毒1型(HIV-1)的Gag蛋白是该病毒的主要结构蛋白,足以形成病毒颗粒。我们利用最近开发的双砷标记方法,通过在Pr55Gag表达构建体和全长前病毒构建体中,在Gag的C末端添加一个四半胱氨酸标签(C-C-P-G-C-C),来动态观察活细胞内的HIV-1 Gag。膜通透性双砷化合物FlAsH和ReAsH与这个四半胱氨酸序列共价结合并特异性发出荧光,从而有效地标记细胞内的Gag。通过去卷积荧光显微镜,双砷标记能够轻松且特异性地检测到HeLa、Mel JuSo和Jurkat T细胞中带有四半胱氨酸标签的HIV-1 Gag蛋白(Gag-TC)。在所有检测的细胞类型中,Gag-TC主要定位于质膜或其附近。对HeLa细胞中Gag-TC进行荧光双色分析显示,新生的Gag大多存在于质膜上不同的区域。对Gag-TC肉豆蔻酰化突变体进行细胞内成像观察到整个细胞呈现弥散信号,这与肉豆蔻酰化在Gag定位于质膜中的作用一致。相比之下,L结构域核心序列的突变并没有明显改变Gag的定位,这表明PTAP L结构域在出芽位点发挥作用,而不是作为靶向信号。综上所述,我们的结果表明,Gag在翻译后迅速集中在特定的质膜区域,并证明了双砷标记在可视化Gag动态定位方面的实用性。

相似文献

2
Identification of an intracellular trafficking and assembly pathway for HIV-1 gag.
Traffic. 2006 Jun;7(6):731-45. doi: 10.1111/j.1398-9219.2006.00428.x.
5
Visualizing hepatitis B virus with biarsenical labelling in living cells.
Liver Int. 2014 Nov;34(10):1532-42. doi: 10.1111/liv.12419. Epub 2013 Dec 23.
7
Role of the human T-cell leukemia virus type 1 PTAP motif in Gag targeting and particle release.
J Virol. 2006 Apr;80(7):3634-43. doi: 10.1128/JVI.80.7.3634-3643.2006.
8
Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly.
J Virol. 2000 Mar;74(6):2855-66. doi: 10.1128/jvi.74.6.2855-2866.2000.
10
ReAsH: another viable option for in vivo protein labelling in Dictyostelium.
J Microsc. 2009 Apr;234(1):9-15. doi: 10.1111/j.1365-2818.2009.03149.x.

引用本文的文献

1
Double-Labeling Method for Visualization and Quantification of Membrane-Associated Proteins in .
Int J Mol Sci. 2023 Jun 24;24(13):10586. doi: 10.3390/ijms241310586.
2
Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells.
J Virol. 2022 Apr 13;96(7):e0184621. doi: 10.1128/jvi.01846-21. Epub 2022 Mar 14.
4
Single-Virus Tracking: From Imaging Methodologies to Virological Applications.
Chem Rev. 2020 Feb 12;120(3):1936-1979. doi: 10.1021/acs.chemrev.9b00692. Epub 2020 Jan 17.
6
Live-Cell Imaging of Early Steps of Single HIV-1 Infection.
Viruses. 2018 May 19;10(5):275. doi: 10.3390/v10050275.
7
The novel mitochondria localization of influenza A virus NS1 visualized by FlAsH labeling.
FEBS Open Bio. 2017 Nov 6;7(12):1960-1971. doi: 10.1002/2211-5463.12336. eCollection 2017 Dec.
9
A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization.
Front Physiol. 2016 Jul 19;7:300. doi: 10.3389/fphys.2016.00300. eCollection 2016.
10
Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy.
PLoS One. 2015 Feb 27;10(2):e0116921. doi: 10.1371/journal.pone.0116921. eCollection 2015.

本文引用的文献

1
Endosomes, exosomes and Trojan viruses.
Trends Microbiol. 2004 Jul;12(7):310-6. doi: 10.1016/j.tim.2004.05.004.
2
Retroviral mRNA nuclear export elements regulate protein function and virion assembly.
EMBO J. 2004 Jul 7;23(13):2632-40. doi: 10.1038/sj.emboj.7600270. Epub 2004 Jun 17.
4
Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors.
Nat Neurosci. 2004 Mar;7(3):244-53. doi: 10.1038/nn1189. Epub 2004 Feb 8.
7
Visualization of retroviral replication in living cells reveals budding into multivesicular bodies.
Traffic. 2003 Nov;4(11):785-801. doi: 10.1034/j.1600-0854.2003.00135.x.
8
HIV-1 egress is gated through late endosomal membranes.
Traffic. 2003 Dec;4(12):902-10. doi: 10.1046/j.1600-0854.2003.00145.x.
9
Evidence that HIV budding in primary macrophages occurs through the exosome release pathway.
J Biol Chem. 2003 Dec 26;278(52):52347-54. doi: 10.1074/jbc.M309009200. Epub 2003 Oct 14.
10
HIV's great escape.
Nat Med. 2003 Oct;9(10):1262-3. doi: 10.1038/nm1003-1262.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验