Suppr超能文献

一种用于复杂性状功能图谱分析的非平稳模型。

A non-stationary model for functional mapping of complex traits.

作者信息

Zhao Wei, Chen Ying Q, Casella George, Cheverud James M, Wu Rongling

机构信息

Department of Statistics, University of Florida, Gainesville, FL 32611, USA.

出版信息

Bioinformatics. 2005 May 15;21(10):2469-77. doi: 10.1093/bioinformatics/bti382. Epub 2005 Mar 15.

Abstract

Understanding the genetic control of growth is fundamental to agricultural, evolutionary and biomedical genetic research. In this article, we present a statistical model for mapping quantitative trait loci (QTL) that are responsible for genetic differences in growth trajectories during ontogenetic development. This model is derived within the maximum likelihood context, implemented with the expectation-maximization algorithm. We incorporate mathematical aspects of growth processes to model the mean vector and structured antedependence models to approximate time-dependent covariance matrices for longitudinal traits. Our model has been employed to map QTL that affect body mass growth trajectories in both male and female mice of an F2 population derived from the Large and Small mouse strains. The results from this model are compared with those from the autoregressive-based functional mapping approach. Based on results from computer simulation studies, we suggest that these two models are alternative to one another and should be used simultaneously for the same dataset.

摘要

了解生长的遗传控制是农业、进化和生物医学遗传研究的基础。在本文中,我们提出了一种统计模型,用于绘制负责个体发育过程中生长轨迹遗传差异的数量性状基因座(QTL)。该模型是在最大似然框架内推导出来的,通过期望最大化算法实现。我们纳入了生长过程的数学方面来对均值向量进行建模,并使用结构化自相关模型来近似纵向性状的时间相关协方差矩阵。我们的模型已被用于绘制影响来自大、小鼠品系的F2群体中雄性和雌性小鼠体重生长轨迹的QTL。将该模型的结果与基于自回归的功能映射方法的结果进行了比较。基于计算机模拟研究的结果,我们建议这两种模型互为替代,并且应该针对同一数据集同时使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验