Kurland Brenda F, Heagerty Patrick J
National Alzheimer's Coordinating Center, University of Washington, 4311 11th Avenue NE #300, Seattle, WA 98105, USA.
Biostatistics. 2005 Apr;6(2):241-58. doi: 10.1093/biostatistics/kxi006.
For observational longitudinal studies of geriatric populations, outcomes such as disability or cognitive functioning are often censored by death. Statistical analysis of such data may explicitly condition on either vital status or survival time when summarizing the longitudinal response. For example a pattern-mixture model characterizes the mean response at time t conditional on death at time S = s (for s > t), and thus uses future status as a predictor for the time t response. As an alternative, we define regression conditioning on being alive as a regression model that conditions on survival status, rather than a specific survival time. Such models may be referred to as partly conditional since the mean at time t is specified conditional on being alive (S > t), rather than using finer stratification (S = s for s > t). We show that naive use of standard likelihood-based longitudinal methods and generalized estimating equations with non-independence weights may lead to biased estimation of the partly conditional mean model. We develop a taxonomy for accommodation of both dropout and death, and describe estimation for binary longitudinal data that applies selection weights to estimating equations with independence working correlation. Simulation studies and an analysis of monthly disability status illustrate potential bias in regression methods that do not explicitly condition on survival.
对于老年人群的观察性纵向研究,诸如残疾或认知功能等结局往往会因死亡而被截尾。在总结纵向反应时,对此类数据的统计分析可能会明确以生命状态或生存时间为条件。例如,模式混合模型刻画了在时间S = s(s > t)时死亡的条件下,时间t时的平均反应,因此将未来状态用作时间t反应的预测因子。作为一种替代方法,我们将基于存活的回归定义为一种以生存状态而非特定生存时间为条件的回归模型。此类模型可能被称为部分条件模型,因为时间t时的均值是在存活(S > t)的条件下指定的,而不是使用更精细的分层(s > t时S = s)。我们表明,天真地使用基于标准似然的纵向方法以及带有非独立权重的广义估计方程,可能会导致部分条件均值模型的估计产生偏差。我们开发了一种用于处理失访和死亡的分类方法,并描述了对二元纵向数据的估计,该估计将选择权重应用于具有独立工作相关性的估计方程。模拟研究和对每月残疾状态的分析说明了在未明确以生存为条件的回归方法中存在的潜在偏差。