Wilkins Kenneth J, Fitzmaurice Garrett M
Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
Biostatistics. 2007 Apr;8(2):297-305. doi: 10.1093/biostatistics/kxl010. Epub 2006 Jun 20.
This paper proposes a method for modeling longitudinal binary data when nonresponse depends on unobserved responses. The proposed method presumes that the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates, and can accommodate both monotone and non-monotone missingness. The approach involves a marginally specified pattern-mixture model that directly parameterizes both the marginal means at each occasion and the dependence of each response on indicators of nonresponse pattern. This formulation readily incorporates a variety of nonresponse processes assumed within a sensitivity analysis. Once identifying restrictions have been made, estimation of model parameters proceeds via solution to a set of modified generalized estimating equations. The proposed method provides an alternative to standard selection and pattern-mixture modeling frameworks, while featuring certain advantages of each. The paper concludes with application of the method to data from a contraceptive clinical trial with substantial dropout.
本文提出了一种在无应答依赖于未观察到的应答时对纵向二元数据进行建模的方法。所提出的方法假定推断的目标是每次观测时应答的边际分布及其对协变量的依赖性,并且能够适应单调和非单调缺失。该方法涉及一个边际指定的模式混合模型,该模型直接对每次观测时的边际均值以及每个应答对无应答模式指标的依赖性进行参数化。这种公式很容易纳入敏感性分析中假设的各种无应答过程。一旦做出识别性限制,模型参数的估计通过求解一组修正的广义估计方程进行。所提出的方法为标准选择和模式混合建模框架提供了一种替代方案,同时兼具两者的某些优点。本文最后将该方法应用于一个有大量失访的避孕临床试验数据。