Zavodszky Maria I, Kuhn Leslie A
Protein Structural Analysis and Design Lab, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
Protein Sci. 2005 Apr;14(4):1104-14. doi: 10.1110/ps.041153605.
The goal of this work is to learn from nature about the magnitudes of side-chain motions that occur when proteins bind small organic molecules, and model these motions to improve the prediction of protein-ligand complexes. Following analysis of protein side-chain motions upon ligand binding in 63 complexes, we tested the ability of the docking tool SLIDE to model these motions without being restricted to rotameric transitions or deciding which side chains should be considered as flexible. The model tested is that side-chain conformational changes involving more atoms or larger rotations are likely to be more costly and less prevalent than small motions due to energy barriers between rotamers and the potential of large motions to cause new steric clashes. Accordingly, SLIDE adjusts the protein and ligand side groups as little as necessary to achieve steric complementarity. We tested the hypothesis that small motions are sufficient to achieve good dockings using 63 ligands and the apo structures of 20 different proteins and compared SLIDE side-chain rotations to those experimentally observed. None of these proteins undergoes major main-chain conformational change upon ligand binding, ensuring that side-chain flexibility modeling is not required to compensate for main-chain motions. Although more frugal in the number of side-chain rotations performed, this model substantially mimics the experimentally observed motions. Most side chains do not shift to a new rotamer, and small motions are both necessary and sufficient to predict the correct binding orientation and most protein-ligand interactions for the 20 proteins analyzed.
这项工作的目标是从自然界中了解蛋白质结合小分子时发生的侧链运动幅度,并对这些运动进行建模,以改进蛋白质-配体复合物的预测。在分析了63个复合物中配体结合时蛋白质的侧链运动后,我们测试了对接工具SLIDE对这些运动进行建模的能力,该工具不受限于旋转异构体转换,也无需确定哪些侧链应被视为柔性侧链。所测试的模型是,由于旋转异构体之间的能量障碍以及大的运动可能导致新的空间冲突,涉及更多原子或更大旋转的侧链构象变化可能比小运动成本更高且更不常见。因此,SLIDE尽可能少地调整蛋白质和配体的侧链基团,以实现空间互补。我们使用63种配体和20种不同蛋白质的无配体结构测试了小运动足以实现良好对接的假设,并将SLIDE的侧链旋转与实验观察到的旋转进行了比较。这些蛋白质在配体结合时均未发生主要的主链构象变化,从而确保无需进行侧链柔性建模来补偿主链运动。尽管在进行的侧链旋转数量上较为节省,但该模型基本上模仿了实验观察到的运动。大多数侧链不会转变为新的旋转异构体,对于所分析的20种蛋白质,小运动对于预测正确的结合方向和大多数蛋白质-配体相互作用而言既是必要的也是充分的。