Suppr超能文献

III型依赖的Hrp菌毛是野油菜黄单胞菌疮痂致病变种与辣椒寄主植物进行有效互作所必需的。

The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants.

作者信息

Weber Ernst, Ojanen-Reuhs Tuula, Huguet Elisabeth, Hause Gerd, Romantschuk Martin, Korhonen Timo K, Bonas Ulla, Koebnik Ralf

机构信息

Martin-Luther-Universität, Institut für Genetik, Weinbergweg 10, D-06120 Halle (Saale), Germany.

出版信息

J Bacteriol. 2005 Apr;187(7):2458-68. doi: 10.1128/JB.187.7.2458-2468.2005.

Abstract

The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria expresses a type III secretion system that is necessary for both pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Here we show that X. campestris pv. vesicatoria produces filamentous structures, the Hrp pili, at the cell surface under hrp-inducing conditions. Analysis of purified Hrp pili and immunoelectron microscopy revealed that the major component of the Hrp pilus is the HrpE protein which is encoded in the hrp gene cluster. Sequence homologues of hrpE are only found in other xanthomonads. However, hrpE is syntenic to the hrpY gene from another plant pathogen, Ralstonia solanacearum. Bioinformatic analyses suggest that all major Hrp pilus subunits from gram-negative plant pathogens may share the same structural organization, i.e., a predominant alpha-helical structure. Analysis of nonpolar mutants in hrpE demonstrated that the Hrp pilus is essential for the productive interaction of X. campestris pv. vesicatoria with pepper host plants. Furthermore, a functional Hrp pilus is required for type III-dependent protein secretion. Immunoelectron microscopy revealed that type III-secreted proteins, such as HrpF and AvrBs3, are in close contact with the Hrp pilus during and/or after their secretion. By systematic analysis of nonpolar hrp/hrc (hrp conserved) and hpa (hrp associated) mutants, we found that Hpa proteins as well as the translocon protein HrpF are dispensable for pilus assembly, while all other Hrp and Hrc proteins are required. Hence, there are no other conserved Hrp or Hrc proteins that act downstream of HrpE during type III-dependent protein translocation.

摘要

野油菜黄单胞菌疮痂致病变种(Xanthomonas campestris pv. vesicatoria)这种植物致病细菌表达一种III型分泌系统,该系统对于在感病寄主中的致病性以及在抗病植物中诱导过敏反应都是必需的。这个特殊的蛋白质转运系统由一个23 kb的hrp(过敏反应和致病性)基因簇编码。在此我们表明,在hrp诱导条件下,野油菜黄单胞菌疮痂致病变种在细胞表面产生丝状结构,即Hrp菌毛。对纯化的Hrp菌毛的分析以及免疫电子显微镜观察显示,Hrp菌毛的主要成分是hrp基因簇中编码的HrpE蛋白。hrpE的序列同源物仅在其他黄单胞菌中发现。然而,hrpE与另一种植物病原体青枯雷尔氏菌(Ralstonia solanacearum)的hrpY基因是共线性的。生物信息学分析表明,革兰氏阴性植物病原体的所有主要Hrp菌毛亚基可能具有相同的结构组织,即主要为α螺旋结构。对hrpE中非极性突变体的分析表明,Hrp菌毛对于野油菜黄单胞菌疮痂致病变种与辣椒寄主植物的有效互作至关重要。此外,功能性Hrp菌毛对于III型依赖性蛋白分泌是必需的。免疫电子显微镜观察显示,III型分泌蛋白,如HrpF和AvrBs3,在分泌期间和/或之后与Hrp菌毛紧密接触。通过对非极性hrp/hrc(hrp保守)和hpa(hrp相关)突变体的系统分析,我们发现Hpa蛋白以及转运孔蛋白HrpF对于菌毛组装是可有可无的,而所有其他Hrp和Hrc蛋白都是必需的。因此,在III型依赖性蛋白转运过程中,没有其他保守的Hrp或Hrc蛋白在HrpE下游起作用。

相似文献

2
Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria.
J Bacteriol. 2005 Sep;187(17):6175-86. doi: 10.1128/JB.187.17.6175-6186.2005.
3
hrpf of Xanthomonas campestris pv. vesicatoria encodes an 87-kDa protein with homology to NoIX of Rhizobium fredii.
Mol Plant Microbe Interact. 1997 May;10(4):488-98. doi: 10.1094/MPMI.1997.10.4.488.
7
Refinement of the Xanthomonas campestris pv. vesicatoria hrpD and hrpE operon structure.
Mol Plant Microbe Interact. 2007 May;20(5):559-67. doi: 10.1094/MPMI-20-5-0559.
8
The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens.
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9368-73. doi: 10.1073/pnas.96.16.9368.
10
Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas.
J Bacteriol. 2006 Feb;188(4):1405-10. doi: 10.1128/JB.188.4.1405-1410.2006.

引用本文的文献

2
Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections.
Plant Cell Rep. 2024 Jul 8;43(8):190. doi: 10.1007/s00299-024-03276-x.
3
Essential Virulence Gene Activates Host Immune Response against Pathogen.
Int J Mol Sci. 2022 Aug 15;23(16):9144. doi: 10.3390/ijms23169144.
4
Comparative Genomic Analysis of the Lettuce Bacterial Leaf Spot Pathogen, pv. , to Investigate Race Specificity.
Front Microbiol. 2022 Apr 18;13:840311. doi: 10.3389/fmicb.2022.840311. eCollection 2022.
5
Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests.
Rice (N Y). 2021 Nov 18;14(1):94. doi: 10.1186/s12284-021-00534-4.
7
Secrete or perish: The role of secretion systems in biology.
Comput Struct Biotechnol J. 2020 Dec 24;19:279-302. doi: 10.1016/j.csbj.2020.12.020. eCollection 2021.
9
A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas.
Mol Plant Pathol. 2018 Nov;19(11):2473-2487. doi: 10.1111/mpp.12725. Epub 2018 Oct 16.

本文引用的文献

1
Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT.
Mol Plant Pathol. 2001 Sep 1;2(5):287-96. doi: 10.1046/j.1464-6722.2001.00077.x.
4
5
Evolution of bacterial type III protein secretion systems.
Trends Microbiol. 2004 Mar;12(3):113-5. doi: 10.1016/j.tim.2004.01.003.
6
Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae.
J Bacteriol. 2004 Mar;186(5):1374-80. doi: 10.1128/JB.186.5.1374-1380.2004.
7
XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria.
J Bacteriol. 2003 Dec;185(24):7092-102. doi: 10.1128/JB.185.24.7092-7102.2003.
8
How Yops find their way out of Yersinia.
Mol Microbiol. 2003 Nov;50(4):1091-4. doi: 10.1046/j.1365-2958.2003.03812.x.
9
Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.
Mol Plant Microbe Interact. 2003 Sep;16(9):743-51. doi: 10.1094/MPMI.2003.16.9.743.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验