Suppr超能文献

植物病原菌野油菜黄单胞菌的Hrp菌毛蛋白HrpE的正向选择。

Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas.

作者信息

Weber Ernst, Koebnik Ralf

机构信息

Institute of Genetics, Martin-Luther-University, Halle, Germany.

出版信息

J Bacteriol. 2006 Feb;188(4):1405-10. doi: 10.1128/JB.188.4.1405-1410.2006.

Abstract

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria possesses a type III secretion (TTS) system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. The TTS system is necessary for pathogenicity in susceptible hosts and induction of the hypersensitive response in resistant plants. At the cell surface, the TTS system is associated with an extracellular filamentous structure, the Hrp pilus, which serves as a conduit for the transfer of bacterial proteins into the plant cell cytosol. The major pilus component, the HrpE pilin, is unique to xanthomonads. Previous work showed that HrpE contains two regions: a hypervariable surface-exposed domain, including the N-terminal secretion signal, and a C-terminal polymerization domain. In this study, the evolutionary rate of the hrpE gene was analyzed. Twenty-one alleles were cloned, sequenced, and compared with five known hrpE alleles. The ratio of synonymous (K(s)) and nonsynonymous (K(a)) substitution rates shows that parts of the HrpE N terminus are subjected to positive selection and the C terminus is subjected to purifying selection. The trade-off between positive and purifying selection at the very-N terminus allowed us to ascertain the amphipathic alpha-helical nature of the TTS signal. This is the first report of a surface structure from a plant-pathogenic bacterium that evolved under the constraint of positive selection and hints to the evolutionary adaptation of this extracellular appendage to avoid recognition by the plant defense surveillance system.

摘要

植物致病细菌野油菜黄单胞菌辣椒斑点病致病变种拥有一种III型分泌(TTS)系统,该系统由23 kb的hrp(过敏反应和致病性)基因簇编码。TTS系统对于在感病寄主中致病以及在抗病植物中诱导过敏反应是必需的。在细胞表面,TTS系统与一种细胞外丝状结构即Hrp菌毛相关联,Hrp菌毛作为将细菌蛋白转移到植物细胞胞质溶胶中的通道。菌毛的主要成分HrpE菌毛蛋白是黄单胞菌所特有的。先前的研究表明,HrpE包含两个区域:一个高度可变的表面暴露结构域,包括N端分泌信号,以及一个C端聚合结构域。在本研究中,分析了hrpE基因的进化速率。克隆并测序了21个等位基因,并与5个已知的hrpE等位基因进行了比较。同义(K(s))和非同义(K(a))替换率的比值表明,HrpE N端的部分区域受到正选择,而C端受到纯化选择。在最N端正选择和纯化选择之间的权衡使我们能够确定TTS信号两亲性α螺旋的性质。这是关于植物致病细菌表面结构在正选择约束下进化的首次报道,并暗示了这种细胞外附属物为避免被植物防御监测系统识别而发生的进化适应。

相似文献

1
Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas.
J Bacteriol. 2006 Feb;188(4):1405-10. doi: 10.1128/JB.188.4.1405-1410.2006.
2
Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria.
J Bacteriol. 2005 Sep;187(17):6175-86. doi: 10.1128/JB.187.17.6175-6186.2005.
4
Refinement of the Xanthomonas campestris pv. vesicatoria hrpD and hrpE operon structure.
Mol Plant Microbe Interact. 2007 May;20(5):559-67. doi: 10.1094/MPMI-20-5-0559.
7
Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae.
Mol Plant Microbe Interact. 2005 Jun;18(6):546-54. doi: 10.1094/MPMI-18-0546.
8
A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola.
Mol Plant Microbe Interact. 2011 Sep;24(9):1086-101. doi: 10.1094/MPMI-09-10-0205.
10
Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.
Mol Plant Microbe Interact. 2014 Oct;27(10):1132-47. doi: 10.1094/MPMI-06-14-0184-R.

引用本文的文献

1
Comparative sequence analysis of pPATH pathogenicity plasmids in gall-forming bacteria.
Front Plant Sci. 2023 Jul 31;14:1198160. doi: 10.3389/fpls.2023.1198160. eCollection 2023.
2
Essential Virulence Gene Activates Host Immune Response against Pathogen.
Int J Mol Sci. 2022 Aug 15;23(16):9144. doi: 10.3390/ijms23169144.
3
Allelic Variation and Selection in Effector Genes of (Mont.) de Bary.
Pathogens. 2020 Jul 9;9(7):551. doi: 10.3390/pathogens9070551.
7
Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis.
BMC Genomics. 2017 Jan 5;18(1):35. doi: 10.1186/s12864-016-3422-7.
9
Structure and function of the bacterial root microbiota in wild and domesticated barley.
Cell Host Microbe. 2015 Mar 11;17(3):392-403. doi: 10.1016/j.chom.2015.01.011. Epub 2015 Feb 26.
10
Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria.
Front Plant Sci. 2014 Mar 27;5:114. doi: 10.3389/fpls.2014.00114. eCollection 2014.

本文引用的文献

2
Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria.
J Bacteriol. 2005 Sep;187(17):6175-86. doi: 10.1128/JB.187.17.6175-6186.2005.
3
Substrate recognition of type III secretion machines--testing the RNA signal hypothesis.
Cell Microbiol. 2005 Sep;7(9):1217-25. doi: 10.1111/j.1462-5822.2005.00563.x.
4
Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa.
J Bacteriol. 2005 May;187(10):3289-92. doi: 10.1128/JB.187.10.3289-3292.2005.
6
Process of protein transport by the type III secretion system.
Microbiol Mol Biol Rev. 2004 Dec;68(4):771-95. doi: 10.1128/MMBR.68.4.771-795.2004.
7
Type III protein secretion mechanism in mammalian and plant pathogens.
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):181-206. doi: 10.1016/j.bbamcr.2004.03.011.
8
Innate immunity in plants and animals: striking similarities and obvious differences.
Immunol Rev. 2004 Apr;198:249-66. doi: 10.1111/j.0105-2896.2004.0119.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验