Suppr超能文献

MIKC型MADS结构域蛋白:陆地植物中的结构模块化、蛋白质相互作用及网络进化

MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants.

作者信息

Kaufmann Kerstin, Melzer Rainer, Theissen Günter

机构信息

Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, Philosophenweg 12, D-07743 Jena, Germany.

出版信息

Gene. 2005 Mar 14;347(2):183-98. doi: 10.1016/j.gene.2004.12.014. Epub 2005 Feb 22.

Abstract

MIKC-type proteins represent a class of MADS-domain transcription factors and are defined by a unique domain structure: in addition to the highly conserved DNA-binding MADS-domain, they have three other domains ('I', 'K' and 'C'), with the keratin-like K-domain being the most highly conserved and characteristic one. The number and functional diversity of MIKC-type proteins increased considerably during land plant evolution, culminating in higher flowering plants, where they dominate the control of reproductive development from early to late stages. We wonder how one special class of proteins became important in the control of essentially all stages of a morphogenetic process. All MADS-domain proteins appear to bind to DNA as homo- or heterodimers and may function as part of ternary transcription factor complexes involving non-MADS-domain proteins. Only MIKC-type proteins, however, generate complex intrafamily interaction networks. These are based on the special potential of MIKC-type proteins to form complexes involving more than two homologous proteins constituting transcriptional regulators. We speculate that the potential to form heteromultimers of homologous proteins was achieved by the acquisition of the K-domain during evolution. There is emerging evidence that organismal complexity arises from progressively more elaborate regulation of gene expression. We hypothesize that combinatorial multimer formation of MIKC-type MADS-domain proteins facilitated an unusually efficient and rapid functional diversification based on gene duplication, sequence divergence and fixation. This 'networking' may have enabled a more sophisticated transcriptional control of target genes which was recruited for controlling increasingly complex and diverse developmental pathways during the rapid origin and diversification of plant reproductive structures. Therefore, MIKC-type proteins may owe their evolutionary 'success' and present-day developmental importance in part to their modular domain structure. Investigating the evolution of MIKC-type genes may thus help to better understand origin and diversification of gene regulatory networks.

摘要

MIKC型蛋白代表一类MADS结构域转录因子,其由独特的结构域结构定义:除了高度保守的DNA结合MADS结构域外,它们还有其他三个结构域(“I”、“K”和“C”),其中类角蛋白K结构域是最保守且最具特征的结构域。在陆地植物进化过程中,MIKC型蛋白的数量和功能多样性显著增加,在高等开花植物中达到顶峰,在这些植物中,它们主导着从生殖发育早期到晚期的控制。我们想知道一类特殊的蛋白如何在一个形态发生过程的几乎所有阶段的控制中变得重要。所有MADS结构域蛋白似乎都以同二聚体或异二聚体的形式结合DNA,并可能作为涉及非MADS结构域蛋白的三元转录因子复合物的一部分发挥作用。然而,只有MIKC型蛋白会产生复杂的家族内相互作用网络。这些网络基于MIKC型蛋白形成包含两个以上同源蛋白的复合物(构成转录调节因子)的特殊潜力。我们推测,同源蛋白形成异源多聚体的潜力是在进化过程中通过获得K结构域实现的。越来越多的证据表明,生物复杂性源于基因表达调控的日益精细。我们假设,MIKC型MADS结构域蛋白的组合多聚体形成基于基因复制、序列分歧和固定,促进了异常高效和快速的功能多样化。这种“网络化”可能使得对靶基因有更精细的转录控制,这些靶基因被招募来控制植物生殖结构快速起源和多样化过程中日益复杂和多样的发育途径。因此,MIKC型蛋白的进化“成功”及其在当今发育中的重要性可能部分归功于其模块化的结构域结构。因此,研究MIKC型基因的进化可能有助于更好地理解基因调控网络的起源和多样化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验