Suppr超能文献

使用原子力显微镜研究I型胶原蛋白单分子的形貌和力学性能。

Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy.

作者信息

Bozec Laurent, Horton Michael

机构信息

Bone and Mineral Centre, Department of Medicine, University College London, UK. l.bozec@ucl..ac.uk

出版信息

Biophys J. 2005 Jun;88(6):4223-31. doi: 10.1529/biophysj.104.055228. Epub 2005 Mar 18.

Abstract

Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type I collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type I tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging demonstrated a mean (+/- SD) contour length of (287 +/- 35) nm and height of (0.21 +/- 0.03) nm. Submolecular features, namely the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length of approximately 8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at (202 +/- 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample, and substrate in our experimental procedure.

摘要

尽管肌腱和骨骼的力学行为已经研究了几十年,但对于它们特定属性的分子基础仍知之甚少。因此,尽管骨骼和肌腱在结构上都由同一种I型胶原蛋白组成,但它们在生物体内已经进化到具有截然不同的功能。为了理解这些胶原结构在宏观和纳米尺度上力学性能之间的联系,我们通过原子力显微镜从拓扑学和力谱学两方面研究了三聚体I型原胶原分子。高分辨率成像显示其平均(±标准差)轮廓长度为(287±35)nm,高度为(0.21±0.03)nm。还观察到了亚分子特征,即分子的螺旋间距,表现为沿分子长度的重复图案,长度约为8nm,与理论值相当。使用力谱学,我们确定了分子的拉伸模式,其中分子的力学响应和拉脱峰在一个单一特征中相互交织。通过用蠕虫状链模型解释这种响应,我们提取出分子的有效轮廓长度值为(202±5)nm。这个值比直接测量得到的值小,这表明在力测量过程中整个分子并没有被拉伸;这可能与我们实验过程中探针、样品和基底之间不存在共价结合有关。

相似文献

1
Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy.
Biophys J. 2005 Jun;88(6):4223-31. doi: 10.1529/biophysj.104.055228. Epub 2005 Mar 18.
5
Nanomechanical sequencing of collagen: tropocollagen features heterogeneous elastic properties at the nanoscale.
Integr Biol (Camb). 2009 Jul;1(7):452-9. doi: 10.1039/b906864c. Epub 2009 Jun 9.
6
Studying collagen self-assembly by time-lapse high-resolution atomic force microscopy.
Methods Mol Biol. 2011;736:97-107. doi: 10.1007/978-1-61779-105-5_7.
7
Solvent specific persistence length of molecular type I collagen.
Biopolymers. 2014 Apr;101(4):329-35. doi: 10.1002/bip.22365.
9
Mechanical properties of collagen fibrils.
Biophys J. 2007 Aug 15;93(4):1255-63. doi: 10.1529/biophysj.106.103192. Epub 2007 May 25.
10
Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
Biophys J. 2014 Oct 21;107(8):1794-1801. doi: 10.1016/j.bpj.2014.09.003.

引用本文的文献

3
Unraveling the molecular mechanism of collagen flexibility during physiological warmup using molecular dynamics simulation and machine learning.
Comput Struct Biotechnol J. 2023 Feb 10;21:1630-1638. doi: 10.1016/j.csbj.2023.02.017. eCollection 2023.
5
Finite element modeling of α-helices and tropocollagen molecules referring to spike of SARS-CoV-2.
Biophys J. 2022 Jun 21;121(12):2353-2370. doi: 10.1016/j.bpj.2022.05.021. Epub 2022 May 20.
6
Muscular and Tendon Degeneration after Achilles Rupture: New Insights into Future Repair Strategies.
Biomedicines. 2021 Dec 23;10(1):19. doi: 10.3390/biomedicines10010019.
7
Type I collagen hydrogels as a delivery matrix for royal jelly derived extracellular vesicles.
Drug Deliv. 2020 Dec;27(1):1308-1318. doi: 10.1080/10717544.2020.1818880.
8
Collagen peptide simulated bending after applied axial deformation.
J Mech Behav Biomed Mater. 2020 Aug;108:103835. doi: 10.1016/j.jmbbm.2020.103835. Epub 2020 May 1.
10
Environmentally Controlled Curvature of Single Collagen Proteins.
Biophys J. 2018 Oct 16;115(8):1457-1469. doi: 10.1016/j.bpj.2018.09.003. Epub 2018 Sep 13.

本文引用的文献

1
The desorption process of macromolecules adsorbed on interfaces: the force spectroscopy approach.
Chemphyschem. 2001 Oct 15;2(10):610-3. doi: 10.1002/1439-7641(20011015)2:10<610::AID-CPHC610>3.0.CO;2-6.
2
Assembly of collagen into microribbons: effects of pH and electrolytes.
J Struct Biol. 2004 Dec;148(3):268-78. doi: 10.1016/j.jsb.2004.07.001.
3
Atomic force microscopy: mechanical unfolding of proteins.
Methods. 2004 Sep;34(1):100-11. doi: 10.1016/j.ymeth.2004.03.007.
5
Structure of collagen.
Nature. 1955 Sep 24;176(4482):593-5. doi: 10.1038/176593a0.
6
Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner.
Biophys J. 2003 Apr;84(4):2593-8. doi: 10.1016/S0006-3495(03)75064-4.
7
Direct quantification of the flexibility of type I collagen monomer.
Biochem Biophys Res Commun. 2002 Jul 12;295(2):382-6. doi: 10.1016/s0006-291x(02)00685-x.
8
Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM.
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4278-83. doi: 10.1073/pnas.072435699. Epub 2002 Mar 26.
9
Surface organization and nanopatterning of collagen by dip-pen nanolithography.
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13660-4. doi: 10.1073/pnas.241323198. Epub 2001 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验