Suppr超能文献

Summarizing complexity in high dimensions.

作者信息

Young Karl, Chen Yue, Kornak John, Matson Gerald B, Schuff Norbert

机构信息

Department of Radiology, University of California-San Francisco, San Francisco, California 94121, USA.

出版信息

Phys Rev Lett. 2005 Mar 11;94(9):098701. doi: 10.1103/PhysRevLett.94.098701. Epub 2005 Mar 8.

Abstract

High-dimensional, multispectral data on complex physical systems are increasingly common. As the amount of information in data sets increases, the difficulty of effectively utilizing it also increases. For such data, summary information is required for understanding and modeling the underlying dynamics. It is here proposed to use an extension of computational mechanics [C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817 (2001)] to arbitrary spatiotemporal and spectral dimension, for providing such summary information. An example of the use of these tools to identify state evolution in the brain, an archetypal, complex biophysical system, serves as an illustration.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验