Hore Prodip, Hall Lawrence O, Goldgof Dmitry B, Gu Yuhua, Maudsley Andrew A, Darkazanli Ammar
Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA.
J Signal Process Syst. 2009 Jan 1;54(1-3):183-203. doi: 10.1007/s11265-008-0243-1.
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data.
介绍了一种快速、准确且全自动的人脑磁共振图像分割方法。该方法扩展性良好,能够对高分辨率图像进行快速分割。此方法基于对软聚类算法模糊c均值的改进,使其能够扩展到大型数据集。讨论了两种创建模糊c均值增量版本的改进方法。对于中等到极大的数据集,与模糊c均值相比,它们速度更快,因为它们处理的数据是连续子集。其质量与将模糊c均值应用于所有数据相当。结合了不均匀性校正和平滑处理的聚类算法用于创建一个自动分割人脑磁共振图像的框架。该框架应用于从不同磁共振扫描仪获取的一组正常人类脑容积数据,这些数据使用了不同的头部线圈、采集参数和场强。将结果与两个广泛使用的磁共振图像分割程序——统计参数映射和FMRIB软件库(FSL)的结果进行比较。结果与FSL相当,同时在处理更大体积数据时显著加快了速度并具有更好的扩展性。