Suppr超能文献

一种用于分割磁共振图像的可扩展框架。

A Scalable Framework For Segmenting Magnetic Resonance Images.

作者信息

Hore Prodip, Hall Lawrence O, Goldgof Dmitry B, Gu Yuhua, Maudsley Andrew A, Darkazanli Ammar

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

J Signal Process Syst. 2009 Jan 1;54(1-3):183-203. doi: 10.1007/s11265-008-0243-1.

Abstract

A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data.

摘要

介绍了一种快速、准确且全自动的人脑磁共振图像分割方法。该方法扩展性良好,能够对高分辨率图像进行快速分割。此方法基于对软聚类算法模糊c均值的改进,使其能够扩展到大型数据集。讨论了两种创建模糊c均值增量版本的改进方法。对于中等到极大的数据集,与模糊c均值相比,它们速度更快,因为它们处理的数据是连续子集。其质量与将模糊c均值应用于所有数据相当。结合了不均匀性校正和平滑处理的聚类算法用于创建一个自动分割人脑磁共振图像的框架。该框架应用于从不同磁共振扫描仪获取的一组正常人类脑容积数据,这些数据使用了不同的头部线圈、采集参数和场强。将结果与两个广泛使用的磁共振图像分割程序——统计参数映射和FMRIB软件库(FSL)的结果进行比较。结果与FSL相当,同时在处理更大体积数据时显著加快了速度并具有更好的扩展性。

相似文献

1
A Scalable Framework For Segmenting Magnetic Resonance Images.
J Signal Process Syst. 2009 Jan 1;54(1-3):183-203. doi: 10.1007/s11265-008-0243-1.
2
Brain tissue segmentation using fuzzy clustering techniques.
Technol Health Care. 2015;23(5):571-80. doi: 10.3233/THC-151012.
3
Generalized rough fuzzy c-means algorithm for brain MR image segmentation.
Comput Methods Programs Biomed. 2012 Nov;108(2):644-55. doi: 10.1016/j.cmpb.2011.10.010. Epub 2011 Nov 15.
4
A level set method based on domain transformation and bias correction for MRI brain tumor segmentation.
J Neurosci Methods. 2021 Mar 15;352:109091. doi: 10.1016/j.jneumeth.2021.109091. Epub 2021 Jan 27.
6
A fast and automatic segmentation method of MR brain images based on genetic fuzzy clustering algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5628-33. doi: 10.1109/IEMBS.2007.4353623.
7
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
8
Effective fuzzy c-means based kernel function in segmenting medical images.
Comput Biol Med. 2010 Jun;40(6):572-9. doi: 10.1016/j.compbiomed.2010.04.001. Epub 2010 May 4.
9
A multiscale and multiblock fuzzy C-means classification method for brain MR images.
Med Phys. 2011 Jun;38(6):2879-91. doi: 10.1118/1.3584199.
10
A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering.
IEEE Trans Image Process. 2000;9(7):1238-48. doi: 10.1109/83.847836.

引用本文的文献

1
C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter.
Front Neurol. 2023 Aug 3;14:1205426. doi: 10.3389/fneur.2023.1205426. eCollection 2023.
3
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
PLoS One. 2018 May 24;13(5):e0197499. doi: 10.1371/journal.pone.0197499. eCollection 2018.
4
Accelerating Fuzzy-C Means Using an Estimated Subsample Size.
IEEE Trans Fuzzy Syst. 2014 Oct;22(5):1229-1244. doi: 10.1109/TFUZZ.2013.2286993. Epub 2013 Oct 23.

本文引用的文献

1
Complexity reduction for "large image" processing.
IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611. doi: 10.1109/TSMCB.2002.1033179.
2
On evaluating brain tissue classifiers without a ground truth.
Neuroimage. 2007 Jul 15;36(4):1207-24. doi: 10.1016/j.neuroimage.2007.04.031. Epub 2007 Apr 25.
3
Integrated graph cuts for brain MRI segmentation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):831-8. doi: 10.1007/11866763_102.
4
Constrained Gaussian mixture model framework for automatic segmentation of MR brain images.
IEEE Trans Med Imaging. 2006 Sep;25(9):1233-45. doi: 10.1109/tmi.2006.880668.
5
Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging.
NMR Biomed. 2006 Jun;19(4):492-503. doi: 10.1002/nbm.1025.
6
Fuzzy c-means clustering with spatial information for image segmentation.
Comput Med Imaging Graph. 2006 Jan;30(1):9-15. doi: 10.1016/j.compmedimag.2005.10.001. Epub 2005 Dec 19.
7
Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
IEEE Trans Biomed Eng. 2005 Jun;52(6):1128-31. doi: 10.1109/TBME.2005.846709.
8
Summarizing complexity in high dimensions.
Phys Rev Lett. 2005 Mar 11;94(9):098701. doi: 10.1103/PhysRevLett.94.098701. Epub 2005 Mar 8.
9
An accurate and efficient bayesian method for automatic segmentation of brain MRI.
IEEE Trans Med Imaging. 2002 Aug;21(8):934-45. doi: 10.1109/TMI.2002.803119.
10
Fast robust automated brain extraction.
Hum Brain Mapp. 2002 Nov;17(3):143-55. doi: 10.1002/hbm.10062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验