Marco-Pallarés J, Grau C, Ruffini G
Neurodynamics Laboratory, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035 Barcelona, Catalonia, Spain.
Neuroimage. 2005 Apr 1;25(2):471-7. doi: 10.1016/j.neuroimage.2004.11.028. Epub 2005 Jan 26.
A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.
神经科学面临的一个主要挑战是精确绘制大型神经元群体的时空活动模式,这些神经元群体被认为是人类大脑计算的基础。为了研究一个具体例子,我们选择了失配负波(MMN)脑电波(一种事件相关电位,ERP),因为它提供了一种“原始智能”的电生理指标,这种智能能够检测常规听觉模式中的变化,甚至是抽象变化。ERP具有毫秒级的时间分辨率,但似乎是由混合的神经元贡献产生的,其空间位置尚未完全了解。因此,在空间和时间上分离这些源很重要。为了解决这个问题,设计了一种两步法,将独立成分分析(ICA)和低分辨率断层扫描(LORETA)算法结合起来。在这里,我们采用这种方法,使用逐次试验的实验数据来分析MMN脑源的亚秒级时空动态。我们证明了一种大脑计算机制是MMN的基础。这种机制由位于颞叶、额叶和顶叶区域的几个空间分布的脑源的协同活动介导,这些脑源在不同的时间间隔激活,并被分为六个主要的统计独立成分。