Gharib Sina A, Luchtel Daniel L, Madtes David K, Glenny Robb W
Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA.
Physiol Genomics. 2005 Jun 16;22(1):14-23. doi: 10.1152/physiolgenomics.00265.2004. Epub 2005 Mar 22.
Chronic hypoxic pulmonary hypertension is an important clinical disorder causing significant morbidity. Despite recent discoveries, many molecular mechanisms involved in its pathogenesis remain unexplored. We have undertaken a systematic and unbiased approach to gain global insights into this complex process. By combining transcriptional profiling with rigorous statistical methods and cluster analysis, we identified the dominant temporal patterns of gene expression during progression and regression of hypoxic pulmonary hypertension. We next integrated these results with global gene annotation analysis to identify key biological themes involved in the development and resolution of hypoxic pulmonary hypertension and vascular remodeling. This novel approach assigned biological roles to thousands of candidate genes based on their temporal expression profiles and membership in specific biological modules. Our procedure confirmed several molecular pathways and gene products known to be important in hypoxic pulmonary hypertension. Furthermore, we discovered several novel candidates and molecular mechanisms, including IQ motif containing GTPase-activating protein-1 (IQGAP1), decorin, insulin-like growth factor binding protein-3 (IGFBP3), and lactotransferrin, that may play crucial roles in hypoxic pulmonary hypertension and vascular remodeling. Our methodology of integrating transcriptional profiling, cluster analysis, and global gene annotation provides new insights into the pathophysiology of pulmonary hypertension and is applicable to other models of human disease.
慢性缺氧性肺动脉高压是一种导致严重发病的重要临床病症。尽管最近有一些发现,但参与其发病机制的许多分子机制仍未被探索。我们采用了一种系统且无偏倚的方法,以全面深入了解这一复杂过程。通过将转录谱分析与严格的统计方法及聚类分析相结合,我们确定了缺氧性肺动脉高压进展和消退过程中基因表达的主要时间模式。接下来,我们将这些结果与全局基因注释分析相结合,以确定参与缺氧性肺动脉高压发展和消退以及血管重塑的关键生物学主题。这种新方法根据数千个候选基因的时间表达谱及其在特定生物学模块中的成员身份,为它们赋予了生物学功能。我们的程序证实了几个已知在缺氧性肺动脉高压中起重要作用的分子途径和基因产物。此外,我们还发现了几个新的候选基因和分子机制,包括含IQ基序的GTP酶激活蛋白-1(IQGAP1)、核心蛋白聚糖、胰岛素样生长因子结合蛋白-3(IGFBP3)和乳铁传递蛋白,它们可能在缺氧性肺动脉高压和血管重塑中发挥关键作用。我们整合转录谱分析、聚类分析和全局基因注释的方法为肺动脉高压的病理生理学提供了新的见解,并且适用于其他人类疾病模型。