Homsy Alexandra, Koster Sander, Eijkel Jan C T, van den Berg Albert, Lucklum F, Verpoorte E, de Rooij Nico F
Institute of Microtechnology, University of Neuchatel, Switzerland.
Lab Chip. 2005 Apr;5(4):466-71. doi: 10.1039/b417892k. Epub 2005 Feb 4.
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.
本文描述了一种直流磁流体动力学(MHD)微泵的工作原理,该微泵可在75微米深的微流体通道中以高直流电流密度(J)运行,且不会将气泡引入泵送通道。产生电流的主要设计特征是一种微加工的类似烧结体的结构,它将泵送通道连接到侧面的储液器,铂电极位于储液器中。在系统中没有明显焦耳热的情况下,可获得高达4000 A m⁻²的电流密度。研究了泵的性能与电流密度、磁场强度以及缓冲液离子强度和pH值的关系。在0.4 T钕铁硼永磁体作用下,在缓冲溶液中,当施加电流密度为4000 A m⁻²时,观察到珠粒速度高达1 mm s⁻¹(0.5 μL min⁻¹)。该泵旨在用于在直流磁场环境中输送具有相对较高离子强度(0.5 - 1 M)的电解质溶液。预计该泵可应用于具有集成核磁共振检测功能的小型化全分析系统(μTAS)中生物样品的研究。在7 T核磁共振环境中,对于给定的施加电流密度,预计体积流速至少会增加16倍。