Suppr超能文献

通过气泡的定向生长和选择性排放实现液体的微泵送。

Micropumping of liquid by directional growth and selective venting of gas bubbles.

作者信息

Meng Dennis Desheng, Kim Chang-Jin C J

机构信息

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095-1597, USA.

出版信息

Lab Chip. 2008 Jun;8(6):958-68. doi: 10.1039/b719918j. Epub 2008 Apr 24.

Abstract

We introduce a new mechanism to pump liquid in microchannels based on the directional growth and displacement of gas bubbles in conjunction with the non-directional and selective removal of the bubbles. A majority of the existing bubble-driven micropumps employs boiling despite the unfavorable scaling of energy consumption for miniaturization because the vapor bubbles can be easily removed by condensation. Other gas generation methods are rarely suitable for micropumping applications because it is difficult to remove the gas bubbles promptly from a pump loop. In order to eradicate this limitation, the rapid removal of insoluble gas bubbles without liquid leakage is achieved with hydrophobic nanopores, allowing the use of virtually any kind of bubbles. In this paper, electrolysis and gas injection are demonstrated as two distinctively different gas sources. The proposed mechanism is first proved by circulating water in a looped microchannel. Using H(2) and O(2) gas bubbles continuously generated by electrolysis, a prototype device with a looped channel shows a volumetric flow rate of 4.5-13.5 nL s(-1) with a direct current (DC) power input of 2-85 mW. A similar device with an open-ended microchannel gives a maximum flow rate of approximately 65 nL s(-1) and a maximum pressure head of approximately 195 Pa with 14 mW input. The electrolytic-bubble-driven micropump operates with a 10-100 times higher power efficiency than its thermal-bubble-driven counterparts and exhibits better controllability. The pumping mechanism is then implemented by injecting nitrogen gas bubbles to demonstrate the flexibility of bubble sources, which would allow one to choose them for specific needs (e.g., energy efficiency, thermal sensitivity, biocompatibility, and adjustable flow rate), making the proposed mechanism attractive for many applications including micro total analysis systems (microTAS) and micro fuel cells.

摘要

我们介绍了一种基于气泡的定向生长和位移以及气泡的非定向和选择性去除来在微通道中泵送液体的新机制。尽管对于小型化而言能量消耗的缩放不利,但现有的大多数气泡驱动微泵仍采用沸腾方式,因为蒸汽气泡可通过冷凝轻松去除。其他气体产生方法很少适用于微泵送应用,因为很难从泵回路中迅速去除气泡。为了消除这一限制,利用疏水性纳米孔实现了不溶性气泡的快速去除且无液体泄漏,从而允许使用几乎任何种类的气泡。在本文中,电解和气体注入被证明是两种截然不同的气体源。所提出的机制首先通过在环形微通道中循环水得到证明。使用由电解连续产生的H₂和O₂气泡,一个具有环形通道的原型装置在2 - 85 mW的直流电源输入下显示出4.5 - 13.5 nL s⁻¹的体积流量。一个具有开放式微通道的类似装置在14 mW输入下给出约65 nL s⁻¹的最大流量和约195 Pa的最大压头。电解气泡驱动的微泵运行时的功率效率比其热气泡驱动的同类产品高10 - 100倍,并且具有更好的可控性。然后通过注入氮气气泡来实现泵送机制,以证明气泡源的灵活性,这将允许人们根据特定需求(例如能量效率、热敏感性、生物相容性和可调节流量)选择气泡源,使得所提出的机制对包括微全分析系统(μTAS)和微型燃料电池在内的许多应用具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验