Hua Q X, Hu S Q, Jia W, Chu Y C, Burke G T, Wang S H, Wang R Y, Katsoyannis P G, Weiss M A
Center for Molecular Oncology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
J Mol Biol. 1998 Mar 20;277(1):103-18. doi: 10.1006/jmbi.1997.1574.
Protein minimization highlights essential determinants of structure and function. Minimal models of proinsulin and insulin-like growth factor I contain homologous A and B domains as single-chain analogues. Such models (designated mini-proinsulin and mini-IGF-I) have attracted wide interest due to their native foldability but complete absence of biological activity. The crystal structure of mini-proinsulin, determined as a T3R3 hexamer, is similar to that of the native insulin hexamer. Here, we describe the solution structure of a monomeric mini-proinsulin under physiologic conditions and compare this structure to that of the corresponding two-chain analogue. The two proteins each contain substitutions in the B-chain (HisB10-->Asp and ProB28-->Asp) designed to destabilize self-association by electrostatic repulsion; the proteins differ by the presence or absence of a peptide bond between LysB29 and GlyA1. The structures are essentially identical, resembling in each case the T-state crystallographic protomer. Differences are observed near the site of cross-linking: the adjoining A1-A8 alpha-helix (variable among crystal structures) is less well-ordered in mini-proinsulin than in the two-chain variant. The single-chain analogue is not completely inactive: its affinity for the insulin receptor is 1500-fold lower than that of the two-chain analogue. Moreover, at saturating concentrations mini-proinsulin retains the ability to stimulate lipogenesis in adipocytes (native biological potency). These results suggest that a change in the conformation of insulin, as tethered by the B29-A1 peptide bond, optimizes affinity but is not integral to the mechanism of transmembrane signaling. Surprisingly, the tertiary structure of mini-proinsulin differs from that of mini-IGF-I (main-chain rms deviation 4.5 A) despite strict conservation of non-polar residues in their respective hydrophobic cores (side-chain rms deviation 4.9 A). Three-dimensional profile scores suggest that the two structures each provide acceptable templates for threading of insulin-like sequences. Mini-proinsulin and mini-IGF-I thus provide examples of homologous protein sequences encoding non-homologous structures.
蛋白质最小化突出了结构和功能的关键决定因素。胰岛素原和胰岛素样生长因子I的最小模型包含作为单链类似物的同源A和B结构域。这类模型(称为微型胰岛素原和微型IGF-I)因其天然可折叠性但完全缺乏生物活性而引起了广泛关注。确定为T3R3六聚体的微型胰岛素原的晶体结构与天然胰岛素六聚体相似。在此,我们描述了生理条件下单体微型胰岛素原的溶液结构,并将该结构与相应的双链类似物的结构进行比较。这两种蛋白质在B链中均含有取代基(HisB10→Asp和ProB28→Asp),旨在通过静电排斥使自缔合不稳定;这两种蛋白质的区别在于LysB29和GlyA1之间是否存在肽键。这两种结构基本相同,在每种情况下都类似于T态晶体原体。在交联位点附近观察到差异:相邻的A1-A8α螺旋(在晶体结构中可变)在微型胰岛素原中比在双链变体中有序性较差。单链类似物并非完全无活性:其对胰岛素受体的亲和力比双链类似物低1500倍。此外,在饱和浓度下,微型胰岛素原保留了刺激脂肪细胞中脂肪生成的能力(天然生物活性)。这些结果表明,由B29-A1肽键连接的胰岛素构象变化优化了亲和力,但对于跨膜信号传导机制并非不可或缺。令人惊讶的是,尽管微型胰岛素原和微型IGF-I在各自疏水核心中的非极性残基严格保守(侧链均方根偏差4.9 Å),但其三级结构仍不同(主链均方根偏差4.5 Å)。三维轮廓得分表明,这两种结构各自为胰岛素样序列的穿线提供了可接受的模板。因此,微型胰岛素原和微型IGF-I提供了编码非同源结构的同源蛋白质序列的实例。