Bauer A J, Rayment I, Frey P A, Holden H M
Department of Biochemistry, University of Wisconsin, Madison 53705.
Proteins. 1992 Apr;12(4):372-81. doi: 10.1002/prot.340120409.
UDP-galactose 4-epimerase catalyzes the conversion of UDP-galactose to UDP-glucose during normal galactose metabolism. The molecular structure of UDP-galactose 4-epimerase from Escherichia coli has now been solved to a nominal resolution of 2.5 A. As isolated from E. coli, the molecule is a dimer of chemically identical subunits with a total molecular weight of 79,000. Crystals of the enzyme used for this investigation were grown as a complex with the substrate analogue, UDP-benzene, and belonged to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 76.3 A, b = 83.1 A, c = 132.1 A, and one dimer per asymmetric unit. An interpretable electron density map calculated to 2.5 A resolution was obtained by a combination of multiple isomorphous replacement with six heavy atom derivatives, molecular averaging, and solvent flattening. Each subunit of epimerase is divided into two domains. The larger N-terminal domain, composed of amino acid residues 1-180, shows a classic NAD+ binding motif with seven strands of parallel beta-pleated sheet flanked on either side of alpha-helices. The seventh strand of the beta-pleated sheet is contributed by amino acid residues from the smaller domain. In addition, this smaller C-terminal domain, consisting of amino acid residues 181-338, contains three strands of beta-pleated sheet, two major alpha-helices and one helical turn. The substrate analogue, UDP-benzene, binds in the cleft located between the two domains with its phenyl ring in close proximity to the nicotinamide ring of NAD+. Contrary to the extensive biochemical literature suggesting that epimerase binds only one NAD+ per functional dimer, the map clearly shows electron density for two nicotinamide cofactors binding in symmetry-related positions in the dimer. Likewise, each subunit in the dimer also binds one substrate analogue.
在正常半乳糖代谢过程中,UDP - 半乳糖4 - 表异构酶催化UDP - 半乳糖向UDP - 葡萄糖的转化。目前已解析出大肠杆菌UDP - 半乳糖4 - 表异构酶的分子结构,标称分辨率为2.5埃。从大肠杆菌中分离出来时,该分子是由化学性质相同的亚基组成的二聚体,总分子量为79,000。用于本研究的酶晶体是与底物类似物UDP - 苯形成复合物生长而成的,属于空间群P2(1)2(1)2(1),晶胞参数为a = 76.3埃,b = 83.1埃,c = 132.1埃,每个不对称单元中有一个二聚体。通过六个重原子衍生物的多同晶置换、分子平均和溶剂扁平化相结合的方法,获得了分辨率为2.5埃的可解释电子密度图。表异构酶的每个亚基分为两个结构域。较大的N端结构域由1 - 180个氨基酸残基组成,呈现出经典的NAD⁺结合基序,有七条平行β - 折叠链,两侧为α - 螺旋。β - 折叠链的第七条链由较小结构域的氨基酸残基贡献。此外,这个较小的C端结构域由181 - 338个氨基酸残基组成,包含三条β - 折叠链、两个主要的α - 螺旋和一个螺旋圈。底物类似物UDP - 苯结合在两个结构域之间的裂隙中,其苯环紧邻NAD⁺的烟酰胺环。与大量生化文献表明表异构酶每个功能二聚体仅结合一个NAD⁺相反,该图谱清楚地显示了在二聚体中对称相关位置结合的两个烟酰胺辅因子的电子密度。同样,二聚体中的每个亚基也结合一个底物类似物。