Nibbering Erik T J, Fidder Henk, Pines Ehud
Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany.
Annu Rev Phys Chem. 2005;56:337-67. doi: 10.1146/annurev.physchem.56.092503.141314.
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
时间分辨红外(IR)和拉曼光谱能够阐明超快化学反应过程中的分子结构演变。实时追踪振动标记模式可直接洞察结构动力学,这在分子内氢转移、双分子质子转移、电子转移、溶剂化动力学过程中的氢键形成、有机金属化合物和血红素蛋白中的键断裂、视网膜蛋白中的顺反异构化以及光致变色开关对的转变等研究中得到了证实。飞秒红外光谱可监测氢键中的位点特异性相互作用。通过结合量子化学计算检查指纹红外或拉曼活性振动,能够追踪分子内电子转移过程中激发电子态之间的转换。通过红外活性振动的瞬态频率变化以及拉曼共振推导得出的非平衡布居,可以观察到由光激发或从电子激发态到基态的内转换所产生的过量内部振动能量。