Huang Yi-Zhi
Department of Mathematics, Rutgers-The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5352-6. doi: 10.1073/pnas.0409901102. Epub 2005 Apr 4.
Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n)) = 0 for n < 0, V(0)=C1, and the contragredient module V' is isomorphic to V as a V-module; (ii) every N-gradable weak V-module is completely reducible; (iii) V is C(2)-cofinite. We announce a proof of the Verlinde conjecture for V, that is, of the statement that the matrices formed by the fusion rules among irreducible V-modules are diagonalized by the matrix given by the action of the modular transformation tau |--> -1/tau on the space of characters of irreducible V-modules. We discuss some consequences of the Verlinde conjecture, including the Verlinde formula for the fusion rules, a formula for the matrix given by the action of tau |--> -1/tau, and the symmetry of this matrix. We also announce a proof of the rigidity and nondegeneracy property of the braided tensor category structure on the category of V-modules when V satisfies in addition the condition that irreducible V-modules not equivalent to V have no nonzero elements of weight 0. In particular, the category of V-modules has a natural structure of modular tensor category.
设(V)是一个满足以下条件的简单顶点算子代数:(i)当(n < 0)时,(V(n)=0),(V(0)=\mathbb{C}1),且对偶模(V')作为(V -)模与(V)同构;(ii)每个(\mathbb{N}-)分次弱(V -)模都是完全可约的;(iii)(V)是(C(2)-)余有限的。我们宣布对(V)的Verlinde猜想的一个证明,即关于由不可约(V -)模之间的融合规则所形成的矩阵被由模变换(\tau\to - 1/\tau)作用在不可约(V -)模的特征标空间上所给出的矩阵对角化这一陈述的证明。我们讨论了Verlinde猜想的一些推论,包括融合规则的Verlinde公式、由(\tau\to - 1/\tau)作用所给出的矩阵的一个公式以及该矩阵的对称性。我们还宣布了一个证明,当(V)另外满足与(V)不等价的不可约(V -)模没有非零权(0)元素这一条件时,(V -)模范畴上的辫子张量范畴结构的刚性和非退化性质。特别地,(V -)模范畴具有模张量范畴的自然结构。