Suppr超能文献

一种使用芯片杂交(ChIP-chip)数据进行基序建模的增强方法。

A boosting approach for motif modeling using ChIP-chip data.

作者信息

Hong Pengyu, Liu X Shirley, Zhou Qing, Lu Xin, Liu Jun S, Wong Wing H

机构信息

Department of Statistics, Harvard University, Cambridge, MA 02138, USA.

出版信息

Bioinformatics. 2005 Jun 1;21(11):2636-43. doi: 10.1093/bioinformatics/bti402. Epub 2005 Apr 7.

Abstract

MOTIVATION

Building an accurate binding model for a transcription factor (TF) is essential to differentiate its true binding targets from those spurious ones. This is an important step toward understanding gene regulation.

RESULTS

This paper describes a boosting approach to modeling TF-DNA binding. Different from the widely used weight matrix model, which predicts TF-DNA binding based on a linear combination of position-specific contributions, our approach builds a TF binding classifier by combining a set of weight matrix based classifiers, thus yielding a non-linear binding decision rule. The proposed approach was applied to the ChIP-chip data of Saccharomyces cerevisiae. When compared with the weight matrix method, our new approach showed significant improvements on the specificity in a majority of cases.

摘要

动机

构建准确的转录因子(TF)结合模型对于区分其真正的结合靶点与虚假靶点至关重要。这是理解基因调控的重要一步。

结果

本文描述了一种用于TF-DNA结合建模的增强方法。与广泛使用的权重矩阵模型不同,权重矩阵模型基于位置特异性贡献的线性组合来预测TF-DNA结合,我们的方法通过组合一组基于权重矩阵的分类器来构建TF结合分类器,从而产生非线性结合决策规则。所提出的方法应用于酿酒酵母的ChIP-chip数据。与权重矩阵方法相比,我们的新方法在大多数情况下在特异性方面有显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验