Suppr超能文献

通过贝叶斯建模估计诊断测试的敏感性和特异性。

Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling.

作者信息

Branscum A J, Gardner I A, Johnson W O

机构信息

Department of Statistics, University of California, One Shields Ave, Davis, CA 95616, USA.

出版信息

Prev Vet Med. 2005 May 10;68(2-4):145-63. doi: 10.1016/j.prevetmed.2004.12.005.

Abstract

We review recent Bayesian approaches to estimation (based on cross-sectional sampling designs) of the sensitivity and specificity of one or more diagnostic tests. Our primary goal is to provide veterinary researchers with a concise presentation of the computational aspects involved in using the Bayesian framework for test evaluation. We consider estimation of diagnostic-test sensitivity and specificity in the following settings: (i) one test in one population, (ii) two conditionally independent tests in two or more populations, (iii) two correlated tests in two or more populations, and (iv) three tests in two or more populations, where two tests are correlated but jointly independent of the third test. For each scenario, we describe a Bayesian model that incorporates parameters of interest. The WinBUGS code used to fit each model, which is available at http://www.epi.ucdavis.edu/diagnos-tictests/, can be altered readily to conform to different data.

摘要

我们回顾了近期基于横断面抽样设计对一项或多项诊断测试的灵敏度和特异度进行估计的贝叶斯方法。我们的主要目标是为兽医研究人员简明扼要地介绍使用贝叶斯框架进行测试评估时所涉及的计算方面。我们考虑在以下情形下对诊断测试的灵敏度和特异度进行估计:(i)一个总体中的一项测试;(ii)两个或更多总体中的两项条件独立测试;(iii)两个或更多总体中的两项相关测试;以及(iv)两个或更多总体中的三项测试,其中两项测试相关但联合起来独立于第三项测试。对于每种情形,我们描述了一个纳入感兴趣参数的贝叶斯模型。用于拟合每个模型的WinBUGS代码可在http://www.epi.ucdavis.edu/diagnos-tictests/获取,并且可以很容易地进行修改以适应不同的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验