Bardos D C
School of Physics, The University of Melbourne, Victoria, Australia.
Bull Math Biol. 2005 May;67(3):529-45. doi: 10.1016/j.bulm.2004.08.009.
Characterizing organism growth within populations requires the application of well-studied individual size-at-age models, such as the deterministic Gompertz model, to populations of individuals whose characteristics, corresponding to model parameters, may be highly variable. A natural approach is to assign probability distributions to one or more model parameters. In some contexts, size-at-age data may be absent due to difficulties in ageing individuals, but size-increment data may instead be available (e.g., from tag-recapture experiments). A preliminary transformation to a size-increment model is then required. Gompertz models developed along the above lines have recently been applied to strongly heterogeneous abalone tag-recapture data. Although useful in modelling the early growth stages, these models yield size-increment distributions that allow negative growth, which is inappropriate in the case of mollusc shells and other accumulated biological structures (e.g., vertebrae) where growth is irreversible. Here we develop probabilistic Gompertz models where this difficulty is resolved by conditioning parameter distributions on size, allowing application to irreversible growth data. In the case of abalone growth, introduction of a growth-limiting biological length scale is then shown to yield realistic length-increment distributions.
描述种群内生物体的生长情况需要将经过充分研究的个体年龄-大小模型(如确定性的冈珀茨模型)应用于个体特征(对应于模型参数)可能高度可变的个体群体。一种自然的方法是为一个或多个模型参数分配概率分布。在某些情况下,由于确定个体年龄存在困难,可能没有年龄-大小数据,但可能有大小增量数据(例如,来自标记重捕实验)。那么就需要对大小增量模型进行初步转换。最近,按照上述思路开发的冈珀茨模型已应用于高度异质的鲍鱼标记重捕数据。尽管这些模型在模拟早期生长阶段很有用,但它们产生的大小增量分布允许负增长,这在软体动物壳和其他累积生物结构(如椎骨)的情况下是不合适的,因为这些结构的生长是不可逆的。在这里,我们开发了概率冈珀茨模型,通过根据大小对参数分布进行条件设定来解决这个难题,从而使其能够应用于不可逆生长数据。在鲍鱼生长的情况下,引入一个限制生长的生物长度尺度,结果显示可以产生现实的长度增量分布。