Leflaive Joséphine, Céréghino Régis, Danger Michaël, Lacroix Gérard, Ten-Hage Loïc
Laboratoire d'Ecologie des Hydrosystèmes, UMR CNRS 5177, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France.
J Microbiol Methods. 2005 Jul;62(1):89-102. doi: 10.1016/j.mimet.2005.02.002.
The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.
使用Biolog微孔板获得的群落水平生理特征被广泛用于考量细菌群落的功能多样性。Biolog产生大量数据,其分析一直是许多研究的主题。在大多数情况下,经过一些转换后,这些数据会用经典的多变量分析方法进行研究。在此,我们提供了一种替代方法,即使用一种人工智能技术——自组织映射(SOM,无监督神经网络)。我们使用了来自藻类相关细菌群落微观研究的数据,这些细菌群落处于各种营养条件下。对每种底物在两个培养时间的净吸光度以及总细菌活性的化学类群分类进行了分析。与主成分分析和聚类分析相比,SOM似乎是群落分类以及建立细菌群落簇与唯一碳源利用之间明确关系的有价值工具。具体而言,SOM提供了相对大量数据的清晰二维投影且比通常用多变量分析获得的图更容易解释。推荐使用它们来描绘群落功能多样性的时间演变模式。