Suppr超能文献

使用人工神经网络对水生生态系统进行分层群落分类和评估。

Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks.

作者信息

Park Young-Seuk, Chon Tae-Soo, Kwak Inn-Sil, Lek Sovan

机构信息

LADYBIO, CNRS-University Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.

出版信息

Sci Total Environ. 2004 Jul 5;327(1-3):105-22. doi: 10.1016/j.scitotenv.2004.01.014.

Abstract

Benthic macroinvertebrate communities in stream ecosystems were assessed hierarchically through two-level classification methods of unsupervised learning. Two artificial neural networks were implemented in combination. Firstly, the self-organizing map (SOM) was used to reduce the dimension of community data, and secondly, the adaptive resonance theory (ART) was subsequently applied to the SOM to further classify the groups in different scales. Hierarchical grouping in community data efficiently reflected the impact of the environmental factors such as topographic conditions, levels of pollution, and sampling location and time across different scales. New community data not included in the training process were used to test the trained network model. The input data were appropriately grouped at different hierarchical levels by the trained networks, and correspondingly revealed the impact of environmental disturbances and temporal dynamics of communities. The hierarchical clusters based on a two-level classification method could be useful for assessing ecosystem quality and community variations caused by environmental disturbances.

摘要

通过无监督学习的两级分类方法对河流生态系统中的底栖大型无脊椎动物群落进行了分层评估。结合使用了两个人工神经网络。首先,使用自组织映射(SOM)来降低群落数据的维度,其次,随后将自适应共振理论(ART)应用于SOM,以进一步对不同尺度的组进行分类。群落数据中的分层分组有效地反映了地形条件、污染水平以及不同尺度上的采样位置和时间等环境因素的影响。未包含在训练过程中的新群落数据用于测试训练后的网络模型。训练后的网络在不同层次水平上对输入数据进行了适当分组,并相应地揭示了环境干扰和群落时间动态的影响。基于两级分类方法的层次聚类对于评估生态系统质量和环境干扰引起的群落变化可能是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验