Suppr超能文献

果蝇核基因的同义替换率和碱基组成

Rates of synonymous substitution and base composition of nuclear genes in Drosophila.

作者信息

Moriyama E N, Gojobori T

机构信息

National Institute of Genetics, Mishima, Japan.

出版信息

Genetics. 1992 Apr;130(4):855-64. doi: 10.1093/genetics/130.4.855.

Abstract

We compared the rates of synonymous (silent) substitution among various genes in a number of species of Drosophila. First, we found that even for a particular gene, the rate of synonymous substitution varied considerably with Drosophila lineages. Second, we showed a large variation in synonymous substitution rates among nuclear genes in Drosophila. These rates of synonymous substitution were correlated negatively with C content and positively with A content at the third codon positions. Nucleotide sequences were also compared between pseudogenes and their functional homologs. The C content of the pseudogenes was lower than that of the functional genes and the A content of the former was higher than that of the latter. Because the synonymous substitution for functional genes and the nucleotide substitution for pseudogenes are exempted from any selective constraint at the protein level, these observations could be explained by a biased pattern of mutation in the Drosophila nuclear genome. Such a bias in the mutation pattern may affect the molecular clock (local clock) of each nuclear gene of each species. Finally, we obtained the average rates of synonymous substitution for three gene groups in Drosophila; 11.0 x 10(-9), 17.5 x 10(-9) and 27.1 x 10(-9)/site/year.

摘要

我们比较了果蝇多个物种中不同基因间的同义(沉默)替换率。首先,我们发现即使对于特定基因,同义替换率在果蝇谱系中也有很大差异。其次,我们表明果蝇核基因间的同义替换率存在很大差异。这些同义替换率与第三密码子位置的C含量呈负相关,与A含量呈正相关。我们还比较了假基因与其功能同源基因之间的核苷酸序列。假基因的C含量低于功能基因,前者的A含量高于后者。由于功能基因的同义替换和假基因的核苷酸替换在蛋白质水平上不受任何选择限制,这些观察结果可以用果蝇核基因组中偏向性的突变模式来解释。这种突变模式的偏向性可能会影响每个物种每个核基因的分子钟(局部时钟)。最后,我们得出了果蝇三个基因组的同义替换平均速率;分别为11.0×10⁻⁹、17.5×10⁻⁹和27.1×10⁻⁹/位点/年。

相似文献

1
Rates of synonymous substitution and base composition of nuclear genes in Drosophila.
Genetics. 1992 Apr;130(4):855-64. doi: 10.1093/genetics/130.4.855.
2
Low codon bias and high rates of synonymous substitution in Drosophila hydei and D. melanogaster histone genes.
Mol Biol Evol. 1993 Mar;10(2):397-413. doi: 10.1093/oxfordjournals.molbev.a040011.
4
Codon usage bias and base composition of nuclear genes in Drosophila.
Genetics. 1993 Jul;134(3):847-58. doi: 10.1093/genetics/134.3.847.
6
Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes.
J Mol Evol. 1997 Oct;45(4):378-91. doi: 10.1007/pl00006243.
8
Substitution rates in Drosophila nuclear genes: implications for translational selection.
Genetics. 2001 Jan;157(1):295-305. doi: 10.1093/genetics/157.1.295.
9
Molecular evolution of nuclear genes in Cupressacea, a group of conifer trees.
Mol Biol Evol. 2002 May;19(5):736-47. doi: 10.1093/oxfordjournals.molbev.a004132.
10
Variable rates of evolution among Drosophila opsin genes.
Genetics. 1992 Sep;132(1):193-204. doi: 10.1093/genetics/132.1.193.

引用本文的文献

2
Comparative phylogeography of mosquitoes and the role of past climatic change for evolution within Africa.
Ecol Evol. 2018 Feb 16;8(5):3019-3036. doi: 10.1002/ece3.3668. eCollection 2018 Mar.
3
Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea).
Genetica. 2013 Dec;141(10-12):491-9. doi: 10.1007/s10709-013-9748-z.
4
Developmental stage and level of codon usage bias in Drosophila.
Mol Biol Evol. 2008 Nov;25(11):2269-77. doi: 10.1093/molbev/msn189. Epub 2008 Aug 28.
6
Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting.
PLoS Genet. 2006 Oct 27;2(10):e173. doi: 10.1371/journal.pgen.0020173. Epub 2006 Aug 28.
8
Molecular phylogeny of the Drosophila melanogaster species subgroup.
J Mol Evol. 2003 Nov;57(5):562-73. doi: 10.1007/s00239-003-2510-x.
9
Sequence variation of alcohol dehydrogenase (Adh) paralogs in cactophilic Drosophila.
Genetics. 2003 Jan;163(1):181-94. doi: 10.1093/genetics/163.1.181.
10
Substitution rates in Drosophila nuclear genes: implications for translational selection.
Genetics. 2001 Jan;157(1):295-305. doi: 10.1093/genetics/157.1.295.

本文引用的文献

3
Mitochondrial DNA sequences of primates: tempo and mode of evolution.
J Mol Evol. 1982;18(4):225-39. doi: 10.1007/BF01734101.
4
Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene.
Nucleic Acids Res. 1984 Jul 11;12(13):5495-513. doi: 10.1093/nar/12.13.5495.
5
The engrailed locus of Drosophila: structural analysis of an embryonic transcript.
Cell. 1985 Jan;40(1):37-43. doi: 10.1016/0092-8674(85)90306-x.
6
Evidence for higher rates of nucleotide substitution in rodents than in man.
Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741-5. doi: 10.1073/pnas.82.6.1741.
8
Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.
Mol Biol Evol. 1986 Sep;3(5):418-26. doi: 10.1093/oxfordjournals.molbev.a040410.
9
Structure and evolution of the Adh genes of Drosophila mojavensis.
Genetics. 1988 Nov;120(3):713-23. doi: 10.1093/genetics/120.3.713.
10
Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA.
EMBO J. 1988 Dec 1;7(12):3929-37. doi: 10.1002/j.1460-2075.1988.tb03279.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验