Suppr超能文献

使用空间-角度复合技术提高弹性成像的对比噪声比。

Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.

作者信息

Techavipoo Udomchai, Varghese Tomy

机构信息

Department of Medical Physics, The University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Ultrasound Med Biol. 2005 Apr;31(4):529-36. doi: 10.1016/j.ultrasmedbio.2005.01.006.

Abstract

Spatial-angular compounding is a new technique developed for improving the signal-to-noise ratio (SNR) in elastography. Under this method, elastograms of a region-of-interest (ROI) are obtained from a spatially weighted average of local strain estimated along different insonification angles. In this article, we investigate the improvements in the strain contrast and contrast-to-noise ratio (CNR) of the spatially compounded elastograms. Spatial angular compounding is also applied and evaluated in conjunction with global temporal stretching. Quantitative experimental results obtained using a single-inclusion tissue-mimicking phantom demonstrate that the strain contrast reduces slightly but the CNR improves by around 8 to 13 dB. We also present experimental spatial angular compounding results obtained from an in vitro thermal lesion in canine liver tissue embedded in a gelatin phantom that demonstrate the improved visual characteristics (due to the improved CNR) of the compound elastogram. The experimental results provide guidelines for the practical range of maximum insonification angles and estimates of the optimum angular increment.

摘要

空间角复合是一种为提高弹性成像中的信噪比(SNR)而开发的新技术。在这种方法下,感兴趣区域(ROI)的弹性图是通过沿不同超声入射角估计的局部应变的空间加权平均值获得的。在本文中,我们研究了空间复合弹性图的应变对比度和对比噪声比(CNR)的改善情况。空间角复合还与全局时间拉伸一起应用和评估。使用单包埋组织模拟体模获得的定量实验结果表明,应变对比度略有降低,但CNR提高了约8至13 dB。我们还展示了从嵌入明胶体模的犬肝组织中的体外热损伤获得的实验性空间角复合结果,这些结果证明了复合弹性图的视觉特征得到了改善(由于CNR提高)。实验结果为最大超声入射角的实际范围和最佳角度增量的估计提供了指导。

相似文献

1
Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.
Ultrasound Med Biol. 2005 Apr;31(4):529-36. doi: 10.1016/j.ultrasmedbio.2005.01.006.
3
Spatial angular compounding for elastography without the incompressibility assumption.
Ultrason Imaging. 2005 Oct;27(4):256-70. doi: 10.1177/016173460502700404.
4
Noise reduction using spatial-angular compounding for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):510-20.
5
Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
Phys Med Biol. 2007 Jan 7;52(1):13-28. doi: 10.1088/0031-9155/52/1/002. Epub 2006 Dec 4.
6
Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
Ultrasound Med Biol. 2017 Jun;43(6):1290-1301. doi: 10.1016/j.ultrasmedbio.2017.01.026. Epub 2017 Apr 19.
8
Correlation analysis for angular compounding in strain imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Sep;54(9):1903-7. doi: 10.1109/tuffc.2007.475.
9
Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms.
IEEE Trans Med Imaging. 2009 Jun;28(6):872-80. doi: 10.1109/TMI.2008.2011510. Epub 2009 Jan 6.
10
Improvement of Lesion Detection by Complete Angular Compound Ultrasonic Elastography.
Ultrason Imaging. 2017 Jan;39(1):19-32. doi: 10.1177/0161734615627419. Epub 2016 Aug 2.

引用本文的文献

1
Reverberant magnetic resonance elastographic imaging using a single mechanical driver.
Phys Med Biol. 2023 Feb 27;68(5):055015. doi: 10.1088/1361-6560/acbbb7.
2
Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1708-1722. doi: 10.1109/TUFFC.2019.2928546. Epub 2019 Jul 12.
3
3D Myocardial Elastography In Vivo.
IEEE Trans Med Imaging. 2017 Feb;36(2):618-627. doi: 10.1109/TMI.2016.2623636. Epub 2016 Nov 1.
5
Non-rigid image registration based strain estimator for intravascular ultrasound elastography.
Ultrasound Med Biol. 2013 Mar;39(3):515-33. doi: 10.1016/j.ultrasmedbio.2012.09.023. Epub 2012 Dec 15.
6
Correlation analysis for angular compounding in strain imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Sep;54(9):1903-7. doi: 10.1109/tuffc.2007.475.
8
Correlation analysis of the beam angle dependence for elastography.
J Acoust Soc Am. 2006 Jun;119(6):4093-101. doi: 10.1121/1.2195290.
9
Spatial angular compounding for elastography without the incompressibility assumption.
Ultrason Imaging. 2005 Oct;27(4):256-70. doi: 10.1177/016173460502700404.

本文引用的文献

1
Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding.
IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33(3):257-64. doi: 10.1109/t-uffc.1986.26827.
2
Optimum displacement for compound image generation in medical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(4):470-6. doi: 10.1109/58.4184.
3
Fundamental correlation lengths of coherent speckle in medical ultrasonic images.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(1):34-44. doi: 10.1109/58.4145.
4
An adaptive strain estimator for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(2):461-72. doi: 10.1109/58.660156.
5
A theoretical framework for performance characterization of elastography: the strain filter.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):164-72. doi: 10.1109/58.585212.
6
Elastographic axial resolution criteria: an experimental study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(1):304-9. doi: 10.1109/58.818775.
7
Estimation of displacement vectors and strain tensors in elastography using angular insonifications.
IEEE Trans Med Imaging. 2004 Dec;23(12):1479-89. doi: 10.1109/TMI.2004.835604.
9
Improved parametric imaging of scatterer size estimates using angular compounding.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jun;51(6):708-15.
10
Noise reduction using spatial-angular compounding for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):510-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验