Suppr超能文献

基于单个机械驱动器的回声磁共振弹性成像

Reverberant magnetic resonance elastographic imaging using a single mechanical driver.

机构信息

University of Rochester, Hajim School of Engineering and Applied Sciences 1467, Rochester, NY, United States of America.

University of Delaware, Department of Biomedical Engineering 19716, Newark, DE, United States of America.

出版信息

Phys Med Biol. 2023 Feb 27;68(5):055015. doi: 10.1088/1361-6560/acbbb7.

Abstract

Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers (= 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.

摘要

声辐射弹性成像提供了快速而稳健的剪切模量估计; 然而,它对多个机械驱动因素的依赖限制了其临床应用。在这项工作中,我们假设对于像大脑这样的受限器官,声辐射弹性成像可以使用单个机械驱动因素产生准确的磁共振弹性图。为了验证这一假设,我们对 3 名健康志愿者进行了研究; 并对包含直径为 4-18 毫米的球形内含物的受限校准脑模型进行了研究。在这两项研究(即模型和临床)中,成像频率分别为 50 和 70 Hz。我们使用准确性和对比噪声比性能指标来评估声辐射弹性图相对于使用已建立的子区反演方法计算的弹性图。在 50 Hz 成像时,声辐射弹性图的误差在 1.3%到 16.6%之间,在 70 Hz 成像时,误差在 3.1%到 16.8%之间。相比之下,在 50 Hz 时,子区弹性图的误差范围为 1.9%至 13%,在 70 Hz 时,误差范围为 3.6%至 14.9%。声辐射弹性图的对比噪声比范围为 63.1 至 73 dB,而子区弹性图的对比噪声比范围为 65 至 66.2 dB。当在 50 Hz 成像时,从声辐射和子区弹性图估计的平均全球大脑剪切模量分别为 2.36 ± 0.07 kPa 和 2.38 ± 0.11 kPa,当在 70 Hz 成像时,分别为 2.70 ± 0.20 kPa 和 2.89 ± 0.60 kPa。这项研究的结果表明,声辐射弹性成像可以使用单个机械驱动因素产生准确、高质量的大脑弹性图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad75/9969521/dbdac2778f5c/pmbacbbb7f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验