Suppr超能文献

无需不可压缩性假设的弹性成像空间角度复合技术。

Spatial angular compounding for elastography without the incompressibility assumption.

作者信息

Rao Min, Varghese Tomy

机构信息

Department of Medical Physics, The University of Wisconsin-Madison, 1300 University Avenue, 1530 MSC, Madison, WI 53706, USA.

出版信息

Ultrason Imaging. 2005 Oct;27(4):256-70. doi: 10.1177/016173460502700404.

Abstract

Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in the axial strain elastogram utilizing a least-squares approach on the angular displacement estimates that does not use the incompressibility assumption. This method produces axial strain elastograms with higher image quality, compared to noncompounded axial strain elastograms, and is referred to as the least-squares angular-compounding approach for elastography. To distinguish between these two angular compounding methods, the spatial-angular compounding with angular weighting based on the tissue incompressibility assumption is referred to as weighted compounding. In this paper, we compare the performance of the two angular-compounding techniques for elastography using beam steering on a linear-array transducer. Quantitative experimental results demonstrate that least-squares compounding provides comparable but smaller improvements in both the elastographic signal-to-noise ratio and the contrast-to-noise ratio, as compared to the weighted-compounding method. Ultrasound simulation results suggest that the least-squares compounding method performs better and provide accurate and robust results when compared to the weighted compounding method, in the case where the incompressibility assumption does not hold.

摘要

空间角复合是一种能够减少超声弹性成像中噪声伪像的新技术。然而,以往使用空间角复合的结果是基于组织不可压缩性假设。复合弹性图是通过对从不同声束入射角度采集的射频回波信号估计的局部应变进行空间加权平均得到的。在本文中,我们提出了一种新方法,利用对角位移估计采用最小二乘法的方式来减少轴向应变弹性图中的噪声伪像,该方法不使用不可压缩性假设。与未复合的轴向应变弹性图相比,这种方法生成的轴向应变弹性图具有更高的图像质量,被称为弹性成像的最小二乘角复合方法。为了区分这两种角复合方法,基于组织不可压缩性假设的带角加权的空间角复合被称为加权复合。在本文中,我们使用线性阵列换能器上的波束控制来比较这两种弹性成像角复合技术的性能。定量实验结果表明,与加权复合方法相比,最小二乘复合在弹性成像的信噪比和对比噪声比方面提供了相当但较小的改善。超声模拟结果表明,在不可压缩性假设不成立的情况下,与加权复合方法相比,最小二乘复合方法表现更好,能提供准确且稳健的结果。

相似文献

1
Spatial angular compounding for elastography without the incompressibility assumption.
Ultrason Imaging. 2005 Oct;27(4):256-70. doi: 10.1177/016173460502700404.
3
Noise reduction using spatial-angular compounding for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):510-20.
5
Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.
Ultrasound Med Biol. 2005 Apr;31(4):529-36. doi: 10.1016/j.ultrasmedbio.2005.01.006.
6
Correlation analysis for angular compounding in strain imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Sep;54(9):1903-7. doi: 10.1109/tuffc.2007.475.
7
Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
Ultrasound Med Biol. 2017 Jun;43(6):1290-1301. doi: 10.1016/j.ultrasmedbio.2017.01.026. Epub 2017 Apr 19.
8
Estimation of the optimal maximum beam angle and angular increment for normal and shear strain estimation.
IEEE Trans Biomed Eng. 2009 Mar;56(3):760-9. doi: 10.1109/TBME.2008.2005907. Epub 2008 Sep 26.
9
Correlation analysis of the beam angle dependence for elastography.
J Acoust Soc Am. 2006 Jun;119(6):4093-101. doi: 10.1121/1.2195290.
10
Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms.
IEEE Trans Med Imaging. 2009 Jun;28(6):872-80. doi: 10.1109/TMI.2008.2011510. Epub 2009 Jan 6.

引用本文的文献

2
In vivo classification of breast masses using features derived from axial-strain and axial-shear images.
Ultrason Imaging. 2012 Oct;34(4):222-36. doi: 10.1177/0161734612465520.
4
Correlation analysis for angular compounding in strain imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Sep;54(9):1903-7. doi: 10.1109/tuffc.2007.475.
5
Normal and shear strain estimation using beam steering on linear-array transducers.
Ultrasound Med Biol. 2007 Jan;33(1):57-66. doi: 10.1016/j.ultrasmedbio.2006.07.027.

本文引用的文献

1
An adaptive strain estimator for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(2):461-72. doi: 10.1109/58.660156.
2
2-D companding for noise reduction in strain imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):179-91. doi: 10.1109/58.646923.
3
A theoretical framework for performance characterization of elastography: the strain filter.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):164-72. doi: 10.1109/58.585212.
4
A frequency domain model for generating B-mode images with array transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(3):690-9. doi: 10.1109/58.764855.
6
Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.
Ultrasound Med Biol. 2005 Apr;31(4):529-36. doi: 10.1016/j.ultrasmedbio.2005.01.006.
7
Estimation of displacement vectors and strain tensors in elastography using angular insonifications.
IEEE Trans Med Imaging. 2004 Dec;23(12):1479-89. doi: 10.1109/TMI.2004.835604.
8
Noise reduction using spatial-angular compounding for elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):510-20.
9
Wavelet denoising of displacement estimates in elastography.
Ultrasound Med Biol. 2004 Apr;30(4):477-91. doi: 10.1016/j.ultrasmedbio.2003.11.010.
10
The feasibility of using elastography for imaging the Poisson's ratio in porous media.
Ultrasound Med Biol. 2004 Feb;30(2):215-28. doi: 10.1016/j.ultrasmedbio.2003.10.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验